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NEIGHBORLY POLYTOPES 

BY 

IDO SHEMER 

ABSTRACT 

A 2m-polytope O is neighborly if each m vertices of Q determine a face. It is 
shown that the combinatorial structure of a neighborly 2rn-polytope determines 
the combinatorial structure of every subpolytope. We develop a construction of 
"sewing a vertex onto a polytope", which, when applied to a neighborly 
2m-polytope, yields a neighborly 2m-polytope with one more vertex. Using this 
construction, we show that the number g(2m +/3, 2m) of combinatorial types of 
neighborly 2m-polytopes with 2m +/3 vertices grows superexponentially as 
13 ~ o~ (m _- 2 fixed) and as m ~ ~ (/3 _-> 4 fixed). 

1. Introduction 

In this paper  we deal with simplicial k-neighborly d-polytopes in general, and 

in particular with neighborly (i.e. m-neighborly)  2m-polytopes .  

In sections 2 and 3 we establish general combinatorial  propert ies of such 

polytopes. 

In sections 4 and 5 we present and investigate a construction of "sewing" an 

additional vertex to a neighborly 2m-polytope .  

By repeated use of this construction we obtain in section 6 lower bounds for 

the number  g(v, 2m)  of combinatorial  types of neighborly 2m-polytopes  with v 

vertices, g(2m + 4,2m) increases superexponentially with m, and g(v, m) tends 

to infinity superexponentially with v for each fixed m _---2. 

The techniques developed in sections 2-5 are used in [11] to prove that a 

non-cyclic neighborly 2m-poly tope  with v => 2m + 5 vertices has at most 2m 

cyclic subpolytopes with v - 1  vertices. 

The notation and conventions in this paper  follow [6]. In addition, we denote 

by [A 1, A2, �9 �9 �9 ] the set conv (A1 t9 A2 t g . . .  ), where A1, A2," �9 �9 C R d. If a E R d, 

then [ . . . , a , . . . ]  stands for [ . . . , { a } , . - . ] .  
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All the polytopes in this paper are simplicial polytopes but not a simplex, 

unless otherwise specified. 

Throughout the paper, the letter P denotes a d-polytope, and Q denotes a 

neighborly 2m-polytope. 

We shall use the following characterization of faces [6, sec. 2.1, th. 11]: If P is a 

polytope and T C vert P, then [T] E ~ ( P )  iff aft T n [vert P \ T] = 0 .  

We say that a point x E R ~ covers a face (I) of P if x lies beyond all the facets 

of P that include (P (see [6, ch. 5]). 

By a subpolytope of P we mean the convex hull of a subset of vert P. 

We suppose that the reader is familiar with the basic facts about neighborly 

and cyclic polytopes (see [6, see. 4.7 and ch. 7], and [8, pp. 82-93]), in particular 

with Gale's Evenness Condition. 

2. Neighborly polytopes 

In this section we are concerned with properties of the boundary complex of 

neighborly polytopes. The main result is that the combinatorial structure of an 

m-neighborly 2m-polytope determines the combinatorial structure of every 

subpolytope. 

LEMMA 2.1. Intersection lemma. Let S~, . . . ,Sk  be subsets of R d. I f  
�9 k nk=l[Si ]~O and if a =YTL1Ajlajlf~Ai=I[Si] where )Lll>O,/~./I=O, a j l~S  1 

(1 _--<j _--<'tO, E~L~ Ajl = 1, then there are subsets T~ C S~ (1 ~ i <- k )  such that 

k 

(1) n [T , ]~ ;~ ,  
i = 1  

k 

(2) 
i = l  

(3) all E T1. 

PROOF. Let 

V =  R (k-I)~d+1)=(R x R ~ ) x  - . .  X(R x R d) 

k - ' l *  t imes  

For x E R n and 1 =< i _- k define a point x i ~ V as follows: 

- < " < = ( 0 , "  . , 0 , 1 , x ,  - 1 ,  - x , 0 , . . . , 0 ) ;  x 1 = ( - 1 ,  x ,0, . . . ,0) ;  f o r 2 = t = k - 1 ,  x' 

(i - 2)(d + 1) (k - i - 1)(d + 1) 
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finally, x k = (0 , . "  .,0, 1, x). Define also A = U~=,{x' :x ES,}. 
For 1 =< i =< k there are points a,, ~ S, and numbers )y~ _-> 0, 1 = j _-< r, such that 

E~,=~ )y, = 1 and a = E~,~, ~j~aj~. Then 

1 1 ' 1 Aj~aj~- 0v E V. ~-Aj~=I,  ~ - ) t , , > 0  and ~ -  
i = 1  

Hence 0v C conv A. Applying Carath6odory's theorem to the set A in V we find 

subsets T, C S~, 1 <= i =< k, such that a~ E T~, Z~=, l T, I =< (k - 1)(d + 1) + 1 and 

0v E conv(U~=, {x~:x E Z}). A close look at the definition of x ~ reveals that 

0v E conv(U~=l {x ~ :x E Z})implies n~=, conv T ~  ~ .  [] 

We shall use this lemma later with k = 2. 

DEFINITION 2.2. Let S be a subset of vert P. IS] is a missing face (m.f.) of P if 
IS] is not a face of P but for every proper subset T of S, [T] is a face of P. 

(Compare [3, def. 2.1].) 

We say that [S] is a missing k-face (k-m.f.) of P if [S] is a m.f. of P and 

dim [S] = k. 

REMARK. Definition 2.2 remains meaningful even if we drop the assumption 

that the polytope P is simplicial. Also, Theorems 2.3, 2.4, 2.5 and their proofs 

hold for general polytopes. 

THEOREM 2.3. If SC V=vertP, then [S] is a m.f. of P iff 
(1) PflaffS=[S],  
(2) Q ~  [S] n IV\S] Crelint [S], 

(3) IS I = d i m [ S ] +  1. 

PROOF. Suppose [S] is a m.f. of P. Clearly [S]CPNaffS. If x ~ P n  
aft S \ [S l, then there are points y E relint [S], z ~ relbd IS] such that z E (x, y). 

There is a proper face F of [S] such that z E F. F is a face of P. Then y E P \ F, 
z E F, hence x ~  P, a contradiction. Hence P n aft S --- [S]. [S] is not a face of P, 

hence af fSN[V\S]~(~.  S o  [ S ] N [ V \ S ] = P A a f f S N [ V \ S ] = a f f S N  

If T ~ S  then [T] is a face of P, hence a face of IS]. So IS] is a simplex and 

dim[S]  = IS I -  1. 
If x E r e l b d [ S ] ,  then x @ [ T ]  for some T~S. [ T ] E ~ ( P ) ,  hence [T]A 

[ V \ T ] = Q .  So x ~ [ V \ T ]  and afortiori x~[V\S] .  Therefore [ V \ S ] N  

relbd [S] = Q, hence [ V \ S] n [S] C relint[S]. 

Now we turn to the converse part of the theorem. Suppose S C V satisfies (1), 

(2), (3). To prove that [S] is a m.f. of P it clearly suffices to show that if T ~ S and 

I T l = l S ] - l ,  t h e n [ T ] E ~ ( P ) . L e t  xES ,  T=S\{x} .  
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(A) P N aft T = P n a f t S  N aft T = [S] n aft T = [T]. 

(B) We claim that [ T ] O [ V \ T ] = ( ~ .  If not, then there is a point 
a E [ T ] f l [ V \ S , x ] .  There is a point b E [ V \ S ]  such that aE[b ,x] ,  b E  
aft{a,x} since a # x .  It follows that b E a f t S A [ V \ S ] = [ S ] N [ V \ S ]  
Crelint[S]. Since a E[b,x], a ~ x ,  we obtain a E relint[S], a contradiction. 
From (A) and (B) we get 

a f fTO [V\  T] = P O atI TO IV\  T] = IT] n [ v \  T] = ~ .  [] 

THEOREM 2.4. A k-neighborly d-polytope P has no j-m.f, with j < k or 
j > d  - k .  

PROOF. It is obvious that P has no j-m.f, with j < k. Suppose S C vert P = V 

and [S] is a j-m.f, of P. Then [S] O [V \ S] ~ O (Theorem 2.3). Applying the 
intersection Lemma 2.1 we find subsets T~CS, T2C V \ S  such that [T1] O 

[T2] ~ ~ and I T, 1+ I T21 =< d + 2. T~ = S, because otherwise [T,] is a face of P, 
and then 

[T,] n [T2] C[T,] n [ v \  T,] = O. 

I T21 >= k + 1, because P is k-neighborly. Therefore j + 1 = [ S I = ] T~ ]< 

(d +2)-IT2l_-<(d + 2 ) - ( k  + 1),j_-_ d -  k. [] 

An immediate consequence of Theorem 2.4 is the well-known fact: 

THEOREM 2.5. If P is a k-neighborly d-polytope and k > �89 then P is a 
simplex. 

There are many problems concerning the determination of ~:(P) from some 

partial information about ~(P).  A natural question is: under what circumstances 
does skelj~-(P) determine ~(P)?  

THEOREM 2.6. If P is a simplicial k-neighborly d-polytope, then ~;(P) is 
determined by its ( d  - k )-skeleton ; moreover, if S ~vert  P and IS [> d - k + 1, 

then [S] E J;(P) iff [T]E  ~ ( P )  for every T C S with [ T I<= d - k + 1. 

PROOF. Assume S ~ v e r t P , [ S [ > = d - k + 2 .  If [ S ] E ~ ( P ) , t h e n  T C S i m -  
plies [T] E ~(P) ,  since P is simplicial. If [S] ~ ~:(P), then there is a set T C S, 
such that [ T] is m.f. By Theorem 2.4, [ T [ =< d - k + 1. [] 

An immediate consequence is 

THEOREM 2.7. If Q is an m-neighborly 2m-polytope then skel,,Q determines 

~;(O ). 
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It is known, though much harder to prove, that the combinatorial structure of 

every simplicial polytope P of dimension 2m or 2m + 1 is determined by 
skelm~(P). 

THEOREM 2.8. Let P, P+ be k-neighborly d-polytopes, not necessarily simpli- 
cial. Suppose vert P = V, vert P§ = V O {x}, x ~ P, T C V, dim [T] >-_ d - k. If for 
every S ~ T, IS, x] E ,~(P§ then [T] Cbd P. 

REMARK. The assumption, that [ S , x ] E ~ ( P  +) for ail S ~ T, implies that 

T U {x} is aflinely independent and therefore dim [T] = I T I - 1. 

PROOF. If S ~  T then [S,x]~ ~;(P§ hence [ S ] E ~ ( P ) .  Therefore IT] is 

either a face or a m.f. of P. Assume [T] is a m.f. of P. Hence dim IT] =< d -  k 

(Theorem 2.4). But dim [T] _-> d - k, hence dim IT] = d - k and I T I = d - k + 1. 

If IV\  T] n relint Ix, T] ~ O then from the intersection Lemma 2.1 we obtain 

subsets S CT  and R C V\  T that [g]  n Ix, S] ~ O  and [R [+IS l+ 1 =<d +2. 

[ R ] f ~ ( P + ) ,  hence I R l - - k + l .  ISl<=d+l-lRl<-_d-k. Hence SET .  
Ix, S] U Y(P*) contradicts Ix, S] Cl [R] ~ 0 .  Therefore [V \ T] n relint Ix, T] = 
0-  

Let H be a hyperplane that separates V \ T  from Ix, T], V \ T C H - ,  

T U {x} C H § IT] is a m.f. of P, hence there is a point a ~ relint IT] n [ v  \ T] 
(Theorem 2.3). It follows that a E H, hence T C H. So V C H-,  [ T] C bd P. [] 

COROLLARY 2.9. If P is a simplicial polytope then the hypotheses of Theorem 
2.8 imply [ T] E ~ (P) = ~ ( P )  \ {P}. 

We conclude this section with the following result: The combinatorial 
structure of an m-neighborly 2m-polytope determines the combinatorial struc- 

ture of every subpolytope. A somewhat different proof of this result appears in 

[lOl. 

THEOREM 2.10. Let O,O+ be m-neighborly 2m-polytopes, vertO += 

vert O U{x}, x ~  O. Then ~ ( O  +) determines ~;(O). 

Theorem 2.10 is an immediate consequence of Theorem 2.7 and the following 

lemma: 

LEMMA 2.11. Under the assumption of Theorem 2.10, skelm~:(Q +) determines 
skel,,9~(Q); moreover, if T Cvert Q, I T I = m + 1, then IT] E :~(Q) if] either 

(1) IT] ~ ~(O+), or 
(2) [TI ~ ~(Q+), but Ix, S] ~ :~(Q *) .for every S ~ T. 
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PROOF. Let T Cvert Q, I T I = m + 1. If (1) holds then obviously [T] E ,~(O). 

If (2) holds then Corollary 2.9 implies [T] ~ o%(0). Conversely, if [T] E ,~(O)  

but [ T ] f f ~ ( O + )  then x lies beyond all the facets of O that include T. 

Therefore, if S C T, then x lies beyond some facet of P that includes S. But if 

S ~ T, then [S] E ~(O+).  Therefore x lies beneath at least one facet of P that 

includes S, hence [S, x] ~ o%(O +) (see [6, section 5.2]). []  

The following alternative formulation of Theorem 2.10 will be useful in the 

sequel: 

THEOREM 2.12. Let 01, 02 be m-neighborly 2m-polytopes and let the bijection 
q~ : vert Ol ~ vert O2 be a combinatorial equivalence between 01 and Oz. 

If A C vert O1, then the restriction of q~ to A is a combinatorial equivalence 
between [A] and [~(A)].  

3. Universal [aces 

DEFINITION 3.1. Suppose doe  ~ ( P ) ( =  ~(P) \{P}) .  do is a u-universal face 
(u-u.f.) of P if [do, S] ~ ~ ( P )  for every S Cvert P with [S [=< u. 

Define ~ ( P ,  u ) =  {do E ~ ( P ) :  do is a u-u.f, of P}. Note that 9~(P,0)= ~ ( P ) ,  

and Q E  ~(P,k)  itt P is k-neighborly. 

DEFINITION 3.2. do is a universal face (u.f.) of P if do ~ ~ ( P ,  u) with 

u = [~(d-dim do-  1)] = [�89 - [ v e r t  do 1)]. A 1-dimensional u.f. is called a universal 
edge (u.e.). 

Definitions 3.1 and 3.2 can be reformulated using the notion of a quotient 

polytope P/do introduced in [8, ch. 2, th. 16]. (A quotient polytope P/do is a 

polytope K whose face lattice ~ ( K )  is isomorphic to the upper segment [do, P] 

of 

DEFINITION 3.1". do E ~ (P, U) iff either (a) u = 0 and do E ~ (P), or (b) u > 0 

and the quotient polytope P/do is u-neighborly, with I vert P [ - [vert do l vertices. 

REMARK. dim p/do = dim P - dim do - 1 = dim P - I vert do[. Since we assume 

that P is not a simplex, I vert P [ > dim P + 1. Therefore, if do E ~ (P, u), u > 0, 

then [vert P/dol = [vert P 1-  [vert do I>  dim P/do + 1, i.e., P/do is not a simplex, 
<1 i <1 and therefore u = 2 d m P/do = : dim P. 

DEFINITION 3.2*. do is a u.f. of P iff either (a) do is a facet of P, or (b) 

do E ~ ( P )  and P/do is a neighborly (i.e., [~dim P/do]-neighborly) polytope with 

I vert P I - I  vert 4)[ vertices. 
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One can use Definitions 3.1 and 3.2 in the case where P is a simplex. The 

various remarks that follow these definitions remain valid if we adhere to the 

convention that a simplex A is u-neighborly for 0 =< u =< dim A only. 

THEOREM 3.3. Let P be a k-neighborly d-polytope. I f  4 i  E ~(P ,  ui) for 

i =.1,2 and t = u, + u2 + k - d >-_ 0, then 4 = [41, 42] E ~ ( P ,  t). 

PROOF. Assume A C vert P \ 4 and [4 ,  A ] ~  ~ ( P ) .  It suffices to show that 

I A l > t .  

There  are three pairwise disjoint sets B CA,  T1Cver t4 , ,  T2Cver t42  such 

that [T1, T2, B] is a m.f. of P. By Theorem 2.4, I T 1 1 + I T 2 1 + I B I < = d - k + I .  
[TI,42, B]~_B(P) ,  hence IT I I+IBI>=u2+I .  By the same reasoning 

IT21+IBI>-Ul+I .  Therefore  d - k  + l + l B l > = l G l + l T 2 l + 2 [ B l > = u l + u 2  

+2,  h e n c e l A  I > = l B l > = u l + u 2 + k - d + l  = t + l .  [] 

The next theorem is a very useful special case of Theorem 3.3. From this point 

onward, the letter Q will always denote an m-neighborly 2m-polytope.  

THEOREM 3.4. Let 41, " �9 ", 4 t  be pairwise disjoint universal faces of Q. I f  41 

has 2v, vertices (1 <= i <= l) and Vl + "  �9 + v~ <= m, then 4 = [4~,. . ., 4~] is a u.f. of 
Q. 

REMARK. If ~ is a face of Q with 2j vertices, then qb is a u.f. itt ~ is an 

(m - j)-u.f. 

PROOF. Theorem 3.4 in its full generality follows from the case l = 2 by 

induction on I. For l = 2, apply Theorem 3.3 with d = 2m, k = m, ul = m - vl, 

U2 = m -- v2. [ ]  

Let C = C(v, 2m) be a cyclic 2m-polytope with v vertices. There is a natural 

cyclic order  on vert C. Assume that al, a2," �9 ", ao, al are the vertices of C in this 

order.  From Gale's Evenness Condition it follows that [a~, a~+l] (1 =< i < v) and 

[ao, a~] are u.e.s of C, and if v =>2m +3  then C(v ,2m)  has no other u.e.s. See 

also [3, section 3]. The existence of a hamiltonian circuit of u.e.s characterizes 

cyclic polytopes: 

THEOREM 3.5. Assume [ vert Q I = 2m + 3. I f  Q has a simple circuit of length v 

consisting of universal edges, then Q -~ C(v, 2m). 

PROOF. Case I: v < 2 m  + 3. 

Choose 2m + 3 - v vertices of Q which are not in the given circuit, and add 

them to the vertices of the circuit. The resulting set spans a subpolytope Q '  of Q. 

Q '  is neighborly, hence Q' ~- C(2m + 3,2m) (see [6, th. 7.2.3]). The edges of the 
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given circuit are u.e.s in Q', but Q', being a cyclic polytope with 2m + 3 vertices, 

has only one simple circuit of u.e.s of length 2m + 3, a contradiction. 

Case H: v >=2m +3. 

Suppose that the vertices of C(v,2m),  in their natural cyclic order, are 

a~, . . . ,  a~, al. Let ~0 be a 1 : 1 mapping of vert C(v, 2m) into vert Q, which maps 

the cycle a l , . . . ,  a~, a~ onto the given circuit of universal edges of Q. Gale's 

Evenness Condition and Theorem 3.4 imply that q~ induces a 1 : 1 mapping of the 

set of facets of C(v, 2m) into the set of facets of Q. By Lemma 3.6 below, q~ is a 

combinatorial equivalence between C(v, 2m) and Q. [] 

LEMMA 3.6. Suppose ~0 : vert P -~ vert P' is a bijection. If  for every facet F of 
P, F '  = [~0(vert F)] is a facet o[ P', then ~o is a combinatorial equivalence between 
P and P'. 

PROOF. Since the incidence graph of facets and subfacets of the polytope P'  is 

connected, it is enough to verify the following assertion: 

If F', G '  are two adjacent facets of P'  (i.e., F'  N G'  is a subfacet of P') and if 

F '  = ~0(F) for some facet F of P, then G'  = q~(G) for some facet G of P. 

Indeed, consider the set ~-'(vert (F't3 G')). Since P and P'  are simplicial, this 

is the set of vertices of a subfacet H of P. H is included in precisely two different 

facets F, G of P. Since ~0(F) = F', ~o(G) must be G'. [] 

REMARK. Lemma 3.6 holds even without assuming that P and P'  are 

simplicial. The proof in the general case is slightly more involved, and uses 
induction on dim P. 

As we mentioned above, every proper face is a 0-u.f. The next two theorems 

can be considered as generalizations of Theorem 2.6, and Corollary 2.9 to 
Theorem 2.8. 

THEOREM 3.7. Assume P is a k-neighborly d-polytope, S ~ vert P. [S] is a 

u-u.f. "of e iff [T] is a u-u.f, of P for every T C S with I T l <-_ d - k - u + l. 

PROOF. If [ S ] ~ ( P , u )  then there is a set A C v e r t P \ S ,  IA I--<u with 

[S, A ] ~ ~ (P). There are sets T C S, B C A such that [ T, B ] is a m.f. of it', hence 

I TI+IB I--<a-k +1 (Theorem 2.4). 

Case I: I T ] < = d - k - u + l .  
Then IT] ~ 9~(P, u) a contradiction. 

CaseH: I T l > d - k - u + l .  
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Suppose RCT,  I R l = l T l - ( d - k - u + l ) .  Then I T \ R l = d - k - u + l ,  
T \ R C S  and [ T \ R ] ~ ( P , u )  since IBURI-IBI+IRI=IBI+ITI 
- ( d - k  - u  + l ) _ < - ( d - k  + l ) - ( d - k - u  + 1 ) =  u. [] 

THEOREM 3.8. Assume P,P§ are k-neighborly d-polytopes, ver tP  § 
ver tPU{x} ,  x~_P, O ~  A C v e r t P  and IA I > d - k - u .  

If [A \ {q }, x ] E ~ (P§ u ) for every q E A then [A ] E ~ (P, u). 

PROOF. We have to show that if W CvertP\A,  I wl<-u, then 

[A, W l E ~ (P). 

If I W I < u, choose any q E A ; then [A, W, x ] = 

[A \{q},x, W U{q}] ~ ~(P§ hence [A, W] E ~ ( P ) .  Now assume that I WI = 
u. Then I A U W I = I A [ + u > d - k. By Corollary 2.9 it suffices to prove that 
[ S , x ] ~ ( P  § for all S E A  O W. 

Assume S ~ A U W. If $2~ A choose a point q E A \ S; then [A \ {q}, x, W] 

~(P+), S C ( A  \{q})UW, hence [ S , x ] ~ ( P + ) .  If S D A ,  then W A S ~ W .  
Choose any q E A ; then [S, x] = [A \{q}, x, (W n S) u {q}] ~ ~(P§ [] 

COROLLARY 3.9. Let Q, Q§ be neighborly 2m-polytopes, vert Q§ = 

ve r tQ  U{x}, x~. Q. I[ O ~  A Cvert Q, IA I-->2 and i[ [A \{q},x] is a u.f. of 

Q+ for every q E A, then [A] is a u.f. o[ Q. 

PROOF. I a I = 2j with j => 1 or [ a  I = 2j - 1 with j => 2. In both cases apply 
Theorem 3.8 with d = 2m, k = m, u = m - j. [] 

We shall use this corollary later with I A I  = 2. 

TI-mOREM 3.10. If  [ vert Q I => 2m + 3, then the graph o[ the universal edges o[ 
Q is either a hamiltonian circuit, or a union o[ disjoint simple paths. 

PROOF. In view of Theorem 3.5, it is sufficient to prove that no vertex of Q is 

included in three u.e.s of Q. 
Suppose x, a, b, c are distinct vertices of Q, and [x, a], [x, b], [x, c] are u.e.s of 

Q. Choose a set A of 2 m -  1 vertices of Q other than x, a, b, c, and define 
Q ' =  [x, a, b, c, A ]. Q'  is a neighborly 2m-polytope with 2m + 3 vertices, hence 

Q'--C(2m+3,2m).  [x,a], [x,b], [x,c] are u.e.s of Q', but no vertex of 

C(2m + 3,2m) is included in three u.e.s, a contradiction. [] 

4. The sewing construction 

In this section we describe a construction, called sewing, and some related 

notions. This construction, first introduced by the author in [9], will play a 

central role in the sequel. 
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The "facet-splitting" operation of Barnette [5] is, in a sense, dual to our 

sewing construction. We shall discuss the relationship between these two 

constructions in section 7.4. 

DEFINmON 4.1. If * E ~ ( P )  and M C v e r t P \ W ,  then we say that M is a 

missing face of P relative to �9 if [M, W] ~ ~(P) ,  but [M', W] E ~ ( P )  for every 
M ' ~ M .  

Define: 5 1 ( P / W ) = { M : M  is a m.f. of P relative to *}. Finally define: 
51(P) = 51(P/12I). 

PROeOSmON 4.2. (1) ~ ( P / P )  = {O}. 

(2) I f  F is a facet of P, then M ( P / F )  = {{q}: q ~ver t  P \F}. 

(3) M ~ 51(P) if] [M] is a m.f. of P. 

(4) I f  M E 51( P / ~  ), then there is a set S in 51( P ) such that M U �9 D S D M. 

(5) I f  �9 E ~ ( P ) ,  then for every vertex b in vert P \ �9 there are sets M and N in 

51( P /xI t) such that b E M and b ~. N. 

I f  Q is a neighborly 2m-polytope then the following properties hold too: 

(6) I f  M E 5 1 ( Q )  then I M l = m + l .  

(7) I f  xI t is a u.f. of Q, I vert �9 I = 2j and M E 5t ( Q /xlt), then I M I = m - j + 1. 

(8) xt t is a u-u.f, of Q iff I M n ~1 < - m - u for every M ~ 51(Q),  or equival- 

ently, if I M \ ~ [ >- u +1 for every M ~ 51( Q ). 

In particular 

(9) E is a u.e. of O iff no element of 51(O) includes vertE. 

PROOF. (1)--(4) follow immediately from Definitions 4.1 and 2.2. In order to 

establish (5), take M = {b} U C, where C is a minimal subset (with respect to 
inclusion) of vert P \ (~  U {b}) such that [b, C, ~] ~ ~ ( P )  but [C, ~] E ~ ( e ) ,  and 
take N to be a minimal subset of vert P \ (xI t U {b}) such that [N, ~]  ~ ~ (P). 

(6) and (7) follow from Theorem 2.4, and (6) implies (8) and (9). [] 

DEFINmON 4.3. A tower in P is a strictly increasing sequence ff  = {Oj}~'~ of 

non-empty proper faces of P. Sometimes we shall adjoin the empty face as a first 

element ~0 of J-. If d~ E ~:(P), denote by ~ .  the set of all facets of P which 

include O. We denote .~,, by ~ (in order to avoid double subscripts). Note that 

~ D ~2D ""~:k. Define cr = ~ ( P ,  f f ) =  ~ \ ( ~ 2 \ ( . . . \ ~ k ) . . . ) .  It is easy to 

see that c~ = (~ : \  ~::)U ( ~ \  ~ 4 ) U " -  where the last term in the union is 

~k_~ \ ~ if k is even or ~ if k is odd. With the convention that o~ = ~ and 
Oj = P  for j > k  we can simply write cr = U~=~(ff:~_~\~,) and similarly 

~ 0 \  ('~ = U~=0(~72i \ ~-2i+1), where ~o is the set of all facets of P. 
We say that 3r = {(P~}7'=1 is  a universal tower (u.t.) in Q if 
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(1) Q is a neighborly 2m-polytope,  

(2) ~j  is a u.f. of O for 1 < j < m, 

(3) Jver tqb j [=2j  for l_<--j_--<m. 

Let ~ be a set of facets of P. We say that a point x ~ R d lies exactly beyond 

with respect to P if x lies beyond every facet of P that is in ~ and beneath every 

other facet of P. If it is clear from the context what is the polytope P, we omit the 

phrase "with respect to P" .  

LEMMA 4.4. Let 9- be a tower in P, qr = ~(P,  if) .  Then there is a point x E R ~ 

which lies exactly beyond cr 

PROOF. By induction on the height k of 9-. If k = 0, define qg = ~ .  In that 

case every point x ~ int P lies exactly beyond cC If k => 1, let 9-' = 9- \ {q~t} and 

qr ~(P,  9-3-'). By the induction hypothesis, there is a point x ' ~  R d, which lies 

exactly beyond c~,. Note that qr and qr = ~l\qff ' .  Choose a point 

p ~ r e l i n t ~  and let x = (1 + e)p - ex'. If e is positive and sufficiently small, 

then x lies exactly beyond ~. [] 

The construction which we have just described will enable us to construct a 

large variety of neighborly polytopes by adding new vertices to existing 

neighborly polytopes. 

From here until the end of section 4 we adhere to the following convention: 

CONVENTION 4.5. Q is a neighborly 2m-polytope,  Q is not simplex, 9 - =  

{~j}j%~ is a u.t. in Q, c~ __ ~(Q,  9-), x lies exactly beyond ~ with respect to Q, 

and Q§ = [Q,x].  

Define Sj = vert qbj \ ~j_~ for j -- 1, 2,. �9 m + 1 (recall that ~o = Q and ~j  = Q 

for j > m). 

THEOREM 4.6. (1) Q+ is a simplicial 2m-polytope and v e r t Q  §  
vert Q LI {x }. 

(2) Q§ is neighborly. 

(3) I f  0 < j <-_ m is even, then ~j  is a u.f. of Q § 

(4) I f  0 < j <-_ m is odd, then ~j is not a u.f. of Q +, but if j < m then ~ is still a 

face of O § 

(5) I f  a E Sj for some 1 < j <-_ m, then [dPj_l, a, x ] is a u.f. of O § 

LEMMA 4.7. (1) vert O + = vert O LI {x}. 

(2) I f  M Cvert  O LI {x}, then M E ~ ( O + )  iff either (a) M = I,.JJ~=l $2~-~ t3 A for 

some integer O<-_j<-_(m+l)]2 and some A E,~(Q/dP2j), or (b) M =  
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U Js, =1 S2v U A U {x } for some integer 0 <- j <= m/2 and some set A E M (O/~2~+1). 
(Note that 'I~,,+1 = Q and .//(Q, Q) = {O}.) 

PROOF. Step 1: We show that if M is of type (a), then [M] ~ ~(Q+).  

Assume M = UJ~=l $2,-1 u A, A E M (Q/cbz~), 0 <= j <= (m + 1)/2. If j = 0, then 

[M] = [A] ~ ~(Q) .  Assume j > 0, hence $1CM. 
Let F be a facet in ~:t~, and let/~ be the maximal integer v such that 1 _<- v -< j 

and F ~ ~:~-,. Then F ~  ~ ,  since otherwise, if IZ < j then F ~ ~:~§ because 

S:~,+tCMCF, and if / ~ = j  then F D A U d ~ i ,  in contradiction to A ~  

d~(Q/~ ) .  Therefore ~ t ~  C U~=~ ( ~ - 1  \ ~ )  c ~. It follows that if M is of type 

(a), then [MI E ~(O+). 

Step 2: We show that if M is of type (b), then [ M ] ~ J ( Q + ) .  Define 

M - =  M \{x}. The rest of step 2 is similar to step 1: we prove that o~t~- 1 C 

UJ~=o (~:2~ \ ~2,+1) c ~:o \ ~ and conclude that [M] Z ~(Q+).  

Step 3: Now we show that if S Cvert Q and [S ]~  ~(O+),  then S includes a 
set M of type (a). Since [S] ~ ~(Q+),  it follows that if F E ~ro and F D S, then 
F~C~. 

Let j be the first nonnegative integer such that [ S , ~ 2 j ] ~ ( Q ) .  Clearly 

2j =< m +2. Since ~,, E ~(Q+)  for even m, it follows that 2j _-< m + 1. 

We proceed to show that S2~-l CS for 1--< v =<j. Since [S,r ~ ~ (Q) ,  if 

S2~_~ Z S then Q has a facet F such that F D S U "2v-2, F25 r hence F ~  
- -  a contradiction. Since [S,~2j] ~ ~ (Q) ,  S includes a set A E d/t(Q/cb2i). 
S D M = O ~  $2~-1 U A, M is of type (a). From this it follows that vert Q c 
vert Q§ x E vert Q+, by the definition of x, hence assertion (1) follows. 

Step 4: Now prove that if x E S Cvert Q+ and [S] ~ ~(Q+),  then S includes a 
set M of type (a) or (b). Denote S- = S \{x}. If [S-] ~ ~(Q+),  then S- includes a 

set of type (a), by step 3. If [S-] E ~(Q+),  then one can show, as in step 3, that S 
includes a set of type (b). 

Step 5: Note that all the sets of type (a) or (b) have m + 1 elements (see 4.2(7)). 

Step 6: Let S be an element of M(Q+). S includes a set M of type (a) or (b) (by 

steps 3, 4). But [M] ~ ~(Q+)  (by steps 1, 2). Hence M = S, and S is of type (a) or 
(b). 

Step 7: Conversely, assume M is of type (a) or (b). [M] IE ~(()+), hence M 

includes a set $ E M(O+). By step 6, S is of type (a) or (b), hence j S J =  J M J =  
m + 1. It follows that M = S E M(O+). 
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PROOF OF THEOREM 4.6. (1) and (2) follow immediately from Lemma 4.7. 

(3) Assume 0 < 2p _-__ m. By 4.2(8), in order to prove that ~z, is a u.f. of Q+, it 
suffices to show that I M \ ~2~ I --> m - 2p + 1 or, equivalently, I M t3 ~2p I =< 2p 

for every M E d~(Q+). 

Case I: Assume M = S , U . . . U S 2 j _ , U A ,  A ~ ( Q / ~ j ) .  If j<=p, then 

IM\~I,2~l=lA\~I%l>=m-2p+l,  since [ A , ~ 2 p ] ~ ( Q ) .  If j>=p, then 

IMn%l=lS, U...u&~_,l=2p. 
Case II: Assume M = S 2 U . "  US2j U A  U{x}, A E~(O/r}2~+,). If j<p ,  

then [M\~2p  I = 1 + [ a  \ % ,  I -  -> m - 2 p  +2.  If j = p ,  then IM tq ~ ,  I= 2p. 

(4) Assume l = < 2 p + l = < m .  Take M = S I U . . . t 3 S 2 p + ~ U A  for some 

A E d~(Q/~2~+2). Then M ~ ~ ( Q + ) ,  I ~2,+~ f3 M [ = 2p + 2, hence ~=p+, is not a 

u.f. of Q§ If j is odd and < m, then ~+ ,  ~ ~(Q+), hence ~j  ~ ~ (Q§ In fact, 

�9 , is an ( m - j -  1)-u.f. of Q§ 

(5) Case L Assume 2 =< 2p -< m, a ~ S~p and consider ~t' = [~2~_,, a, x ]. 

Subcase Ia. M = S~ U . . . O S=j_, U A, A ~ ~ ( Q /r ). If j _-< p, then [ M \ xt' I _-> 
[A \dP~,]>m-2p + l. If j>p ,  then lM ~ l = l S ,  U...USz~_~[= 2 p. 

Subcase lb. M = S~LJ.. .US~ U A U{x}, A G~(Q/cb:~§ If j <p, then 

IM\Xttl>=lA\CP~,l>=m-2p+l. If j>=p, then t M t q * l =  
[&u... u&~_~U{a,x}[ =2p. 

Therefore xt, is (m -2p)-universal  in P§ 

Case II. Assume 1 =<2p + 1 _--- m, a ~ S:,+,, and consider ~t' = [~2p, a,x]. 
Subcase IIa. M=S~U. . .US2~_ ,UA,  A~d~(Q/~p~). If j___<p, then 

[M\~l>=lA\~PZp+ll>=m-(2p+l)+l. If j>p ,  then I M t q ~ l  = 

IS, u . . .  u &,_, u{a}l = 2p + 1. 

Subcase I/b. M = S~ U . . -  U S= i U A U {x}, A ~ J~(Q/(I)21+,). If j _--< p, then 
] M \ V I > I A \ d P = , + , I > m - ( 2 p + I ) + I .  If j>=p, then [MfqaI ' l  = 

~+ts~u- - -~  s2. I=~p +L 
Therefore �9 is (m - (2p + 1))-universal in Q+. []  

THEOREM 4.8. If q'e~(O,u), ~ , n ~ . _ , = O  and I~ns.[_-<l, then 
,I,~ ~(O+,u). 

PROOF. Assume M = U~.~, S2.-, u A, A E e g ( Q / ~ 2 j )  or M = 

UJ.=, $2. u A U {x}, A E d~(Qlfb2j§ Define r = 2 j -  1 in the first case, r = 2j 

in the second case. There is a set M ~ ~ ( Q )  such that A U ~,+, D 3~r D A. If 

r < m ,  then IM n ~I'l = IA n.l--- n ' t ' l < - m - u .  If r =  m, then IM n'I ' l ---  < 
1. If u = m ,  then ~ = O ,  hence 0 = I M N ~ f = < m - u = 0 .  If u < m ,  then 

IMn~l___<l-___m - u .  []  
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THEOREM 4.9. If ~ E ~ ( Q , u ) ,  ~ n q b , , = O ,  aESp, bESp+l, l < p < m  
and [ ~ , a , b ] ~ ( Q , u - 1 ) ,  then [ ~ , a , b ] E ~ ( Q + , u - 1 ) .  

PROOF. We use the same notations as in the proof of Theorem 4.8. If r > p, 

t hen lMn(~U{a ,b} ) l  =l  A n , t , l+  1=< IM n ~I,l+ 1_-< m - u  + l .  If r < p  then 

IM n(~U{a ,b} ) l=l  A o(~u(a,b})l<=l]Ql n ( ~ u { a , b } ) l < = m - ( u - 1 ) .  [] 

TrtZOREM 4.10. An edge E of Q+ is a u.e. of Q+ iff either 
(1) E = [a,x] and a ~$1, or 
(2)E is a u.e. of Q and either (a) E n ~, ,  = O or (b) E = [a, b] with a ~ Sp and 

b ~ Sp§ for some 1 <- p <= m. 

PROOF. In view of Theorems 4.6(5), 4.8, 4.9 and 3.10 it suffices to prove that if 

E = [a, b] is an edge of Q and either 

(a )  a ESp, bEqbe+~ for some l<=p<m, or 

(/3) E =[Sp] for some l<=p<=m, 
then E is not universal in Q§ 

PROOF OF (a). If a E Sp, b ~ ~p+~, 1 =< p < m, then by 4.2(5) b belongs to a set 

A E dl(Q/~p+~). {a} U A is included in a m.f. of Q§ (of type (a) if p is odd and 

of type (b) if p is even). But [a, b ] C [a, A ], hence [a, b ] is not universal in Q +. 

(6) follows immediately from Lemma 4.7. [] 

In the rest of this section we deal with the problem of embedding the complex 
~ ( Q ,  u)  of u-universal faces of Q (see Definition 3.1) in the boundary complex 

of a neighborly 2(m - u)-polytope. 

This material will not be needed in subsequent sections. 

If I vert Q I = 2m + 2, then the structure of Q is well-known (see [6, pp. 98, 
108]). Q has two vertex-disjoint missing m-faces A~, A2, and ~ ( Q ,  u) is the free 

join of skel,,_._~A~ and skel,._,_lA2, i.e. if S C v e r t Q  then [S] E ~ ( Q ,  u) iff 

Isna, l<-_m-u and Isna~l<=m-u. 
It follows that every u-universal ( 2 m - 2 u - 2 ) - f a c e  of Q is included in 

precisely u + 2 u-universal (2m - 2u - 1)-faces of Q, consequently, ~ ( Q ,  u) is 

not embeddable in the boundary complex of any 2 ( m -  u)-polytope, unless 

u = 0 .  

From now on, assume that I vert O I = v = 2m + 3. 

For cyclic polytopes the situation is simple: If Q = C(v, 2m), v => 2m + 3, then 
~(Q, u) ~ ~(C(v,2(m - u))) for u = 0, I , - -  -, m - 1, and the isomorphism is 

given by ar~y mapping of vert Q onto vert C(v ,2(m-  u)) which preserves the 

natural cyclic order of the vertices. Moreover, if the vertices of Q lie on the 
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moment curve x( t )=( t , t%. . . , t2" ) ,  or on the trigonometric moment curve 

x (0) = (cos 0, sin 0 , . . . ,  cos toO, sin toO), then C(v, 2(m - u)) can be taken as the 

image of Q under the orthogonal projection of R TM onto the subspace 

R ~('-~) = { ( x , , . - . ,  x~,,_,), 0 , . . . , 0 ) :  x, ~ R}.  

In the case u = m -  I, Theorem 3.10 solves the problem stated above: 

N(Q, m - 1) is isomorphic to a subcomplex of the boundary complex of a convex 

v-gon. 

Now we shall see that the embeddability of N (Q, u) is preserved by the sewing 

construction. 

THEOREM 4.11. Suppose Q, is a 2(m - u)-polytope (0< u < m), [vert O, ] = 

j vert Q [, and a is an isomorphism of ~ (Q, u) into ~ (Q,). (This implies that Ou is 
neighborly.) Assume also that Q+ = [ Q, x] is obtained from Q by sewing at x 

through a u.t. ~-. 

Then there is a polytope Q+ = [Q., x.], obtained from Q, by sewing at x, through 

an appropriate u.t. ft,, and an isomorphism a + of ~(Q+, u) into ~(Q+.). 

Moreover, a+(q) = t~ (q) for all q ~ vert Q. 

PROOF. Define ~ ,  ={a~j}j~q ". It is easily checked that 3-, is u.t. in Q.. 

Choose x, to be a point that lies exactly beyond cr j - ) ,  and let Q,+ = 

[O.,x~]. 
Define a + : vert Q +--* vert Q + by a +(x) = x,, a ~ (q) for q ~ vert Q. In order to 

show that a + extends to an isomorphism of ~(Q+,  u) into ~(QS) ,  we must 

prove that if S Cvert Q+ and [a+S] ff ~ ( Q + )  then [S] ~ ~(Q§ u). It suffices to 

prove this for S Cvert Q+ such that [a+S] is a m.f. of Qs. 

Assume [a+S] is a m.f. of Q+. 

Case I: a+S = a ($1 U $3 U . . .  U S2j-I) U aA  where 0 ~ j < -~(m - u + 1) and 

a A  E At(Q,/ad~2~), or j = ~(m - u + 1) and A = ~ (see Lemma 4.7). It follows 

that S = S, U S 3 U ' "  U Sn-x U A and [aA, a~2j]ff- ~J(O~). Therefore 

[A, cb2j]ff_~(Q,u), hence there is a set B C v e r t Q ,  [B[<=u and 

[A, B, ~2j] ~ ~ ( Q ) .  
If F is a facet of Q and F D S U B, then F E (ff~ \ if2) U . . .  U (ff2j-3 \ ~2j-z) U 

~%-1 and F ~  ,~2j. Hence [S,B] ff  ~(Q+), and consequently [S] ~ ~ (Q+ ,  u). 

Case H: a +S = a (S2 U $4 U . . .  U S2~) U aA U {xu} where 0 =< j < ~(m - u) 

and aA EAI(Q~/a~2j+l),  or j =~z(m - u )  and A = 0 .  

As above, we find that S = $2 U $4 U - . .  U A U {x } and [A, ~2j+1] ~ 3~ (Q, u). 

There is a set B Cvert Q such that I/3[_-< u and [A, B, qb21.t ] ~ ~ ( Q ) .  
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If F is a facet of O and F D B U ( S \ { x } ) ,  then F ~ ( ~ : o \ ~ 0 U " ' U  
( ~  \ ~j+~), hence [S, B] ~ ~ (Q+), and therefore [S] ff ~(Q§ u). [] 

Theorem 4.11 states that, in an appropriate sense, (Q§ = (Q~)§ 
It is probably not true that for every neighborly 2m-polytope Q (with 

J vertQ J_->2m +3) and for all 1_< u =< m - 2 ,  the complex ~ ( O , u )  can be 
embedded in the boundary complex of a neighborly 2 ( m -  u)-polytope Q,, 

though we have no counterexample. 

5. Reconstruction theorems 

If Q, ~r, ~, x and Q+ are as in Convention 4.5, then we say that Q+ is obtained 

from Q at x by sewing through the tower ft. We claim that the tower J- is 

determined by Q+ and x in the following sense: 
If Q+ is obtained from Q at x by sewing through any tower ~r,, then J"  = ~-. 

In order to prove this it suffices to show that if ~(O, ~-)= q~(O, ~r') then 

3 = ~r,, because Q+ and its vertex x determine ~ (see Theorem 2.10). 

LEMMA 5.1. Let dp be a u.f. of Q with 2] vertices, ~ a u.f. of Qwith  2] +2 

vertices and �9 D ~. Then dp= N(~;. \~; , )  (see Definition 4.3). 

PROOF. Obviously �9 C tq (~| \ ~ . )  C Q. Suppose y E vert Q \ qb. We have to 

show that Q has a facet F such that F D ~, F2~ g' and y ~ F. If y E ~ \ �9 then 
every facet of O which includes �9 and does not contain y is in ~ .  \ ~:,. 

Suppose y~at ' .  By 4.2(5) there is a set A C v e r t Q \ ( ~ U { y } )  such that 

[A, ~]  ~ ~ (Q) and J A J = m - ] (Proposition 4.2(7)). Since y ~ [qb, A ], it follows 
that Q has a facet F such that �9 C F, A C F, y ~ F and necessarily �9 ~ F. [] 

Trmova~M 5.2. For i = 1,2, let ~ be a universal tower in Q. If  qg(Q, J-l) = 
~(Q, ~r2) then ~rl = ~r2. 

PROOF. Let ~r = {~ }7'=1 be a u.t. in Q. We shall prove that qg = qg(Q, 9-) and 

~:(Q) determine ~, (i = 1, . . . ,  m). 

Denote by ~:o the set of all facets of Q. We proceed to define by induction a 

sequence cr ~2 ,""  of subsets of ~0, as follows: 

c~1=~, and % = { F E ~ o \ q g j _ I : N % - I C F }  f o r j > l .  

We claim that ~j = tq ~j for j = 1, 2 , . . . ,  m. Assume 1 _-< j _-< m and ~i = fq ~ 

for all i, I N i < j .  It is easy to prove, by induction on i, that ~i = 
I.,1:~o(~+~ \ ~+2~+1) for 1 < i _-< j. In particular ~ \ ~+~ C ~ C ~ .  For j < m, 
Lemma 5.1 yields qb~ = t q ( ~ \ ~ + ~ )  D tqqg~ D r  = ~ ,  hence ~ = ~ .  If 
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j = m, then c~,, = ~,,, hence O,, = f'l ~,,. For j > m, it can be easily checked that 

% = 0 .  

THEOREM 5.3. Let Q, Q+ be neighborly 2m-polytopes, 
ver tQU{x},  xff. Q. Suppose a, b E v e r t Q ,  a ~ b .  I[ [a,x] and 
universal edges of Q+, then [a, b] is a universal edge of Q. 

Theorem 5.3 is a special case of Corollary 3.9. It can also be deduced directly 

from the following theorem: 

THEOREM 5.4. Let Q, Q+ and x be as in Theorem 5.3. I[ a E vert Q, then 

[a,x] is a u.e. of Q+ iff all the facets of Q that x covers contain a. 

PROOF. Suppose [a,x] is a u.e. of Q+. For 0 < ) t  < 1  let z = z ( ) t ) =  

(1 - )t )a + )tx. It is easy to see that [Q, z] is an m-neighborly polytope. If Q had 

a facet F such that a C F and x lies beyond F, then )t could be chosen such that 

z E att F, contradicting the simpliciality of [Q, z]. 

Now suppose that all the facets of Q that x covers contain a. Assume 

A CvertQ, [ A l = m - 1 .  We have to show that [a,x ,A]EJ;(Q+).  Since 

[a, A ] ~ ~:(Q§ it suffices to prove that Q has a facet F such that x lies beyond 

F and {a} U A CF. But [A, x] E ~(Q+), hence Q has a facet F that includes A 

and is covered by x. Necessarily, a E F. [] 

PROOF OF THEOREM 5.3. Suppose [a, x], [b, x] are u.e.s of Q+. If A Cvert Q, 

I A I = m - 1, then [A, x] E ~:(Q§ hence Q has a facet F such that F D A and 

x lies beyond F. By Theorem 5.4, F D {a, b}, and therefore [a, b, A ] ~ ~:(Q). [] 

The same technique leads to a proof of the next theorem. 

THEOREM 5.5. Let ~ and ~ be sets of facets of Q. Let x, y be points in R 2,, \ Q, 
such that x lies exactly beyond ~g and y lies exactly beyond 9.  Assume both [ Q, x ] 
and [ O, y] are neighborly 2m-polytopes with [vert O l+ 1 vertices. I[ ~ C ~ then 
qg = ~. 

PffOOF. For 0 < A < 1, define z = z(A)= ( 1 -  A)x + y. It is easy to see that 

[Q, z ] is a neighborly polytope (z covers enough, but not too many facets of Q) 

and the simpliciality of [O,z] for every choice of A, 0 < A  _-<1, implies that 

~ \~r  = 0 .  [] 

As a matter of fact, I qg I is a function of v = I v e r t  0 1 a n d  m only: 

1 ~ 1 = ( v - m - l )  
/ '! '1--1 

The next theorem is a converse to Theorem 4.6. 

[] 

vert Q + = 

[b,x] are 
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THEOREM 5�9149 Let Q, 0 § be neighborly 2m-polytopes. Assume vert Q + =  

v e r t Q  U{x}, x ~  Q and let ~- = {~J}7'=, be a tower in Q with Iver t~j  [=2j for 
j = l , 2 , . . . , m .  If 

(1) ~ is a u.f. of Q+ for every even j, 1 <=j <= m, and 

�9 (2) [~j,p,x] is a u.f. of Q§ for every even j, O<=j < m and p Evertqbj+l\qb~ 

(here ~o = 0),  

then ~- is a universal tower in Q, and Q + is obtained from Q at x by sewing through 
.j-. 

REMARK. If P is a subpolytope of P+, and d~ is a face of both P and P§ then 

there is a flat H such that the corespondence xlt---> xlt fq H is an isomorphism of 

the upper segment [qb, p+] of o~(P § onto ~ ( P +  n .H) ,  and the same correspon- 

dence is an isomorphism of the upper segment [~, P]  of i f (P )  onto ~ ( P  fq H )  

(see [8, pp. 72-73]). 

PROOF. Denote  by ~ the set of facets of O covered by x. We have to show 

that 8- is a u.t. in Q and that @ = CO(Q, if)  (see Definition 4.3). 

Assume j is even, 0 =< j < m. Consider the polytopes Q/dOj and Q+/doj. They 

are neighborly 2(m - j ) -po ly topes ,  and vert Q+/dOj = vert Q/~j U {[4) i, x]/doj} by 

the remark above�9 By Corollary 5.3, dOj+l/~j is a u.f. of Q/d~j. Therefore 

[qbj§ A]/dO i is a face of Q/~j for every A Cvert Q \qbi, [A [_-< m - j  - 1. Hence 

4~i+, is a u.f. of Q. It follows that Sr is a u.t. in Q. 

Denote  by x' the vertex [~bj, x ]/~i of Q +/40 i. From condition (2) and Theorem 

5.4 it follows that if x '  lies beyond the facet F '  = F/~j of Q/~i  then F D qb~+~. 

(Note that x '  lies beyond F '  iff x lies beyond F.) It follows that ~ f3 ~ C ~+1 for 

even j, 0 ___< j < m. The same conclusion follows from condition (1) for j = m, if m 

is even (ft,,+1 = O). Therefore ~ fq ( ~  \ ~+l)  = O for even j, 0 _-< j =< m, hence 

~ f q  U { ( ~ \ o ~ + l ) : j  e v e n } = ~ ,  i.e., ~ c c g ( Q ,  ff). By Theorem 4.6 and 

Theorem 5.5 we conclude that ~ = C~(Q, St). [] 

Theorem 5.6 says that we can tell from partial information about  the structure 

of o~(Q) whether Q is obtained by sewing at a given vertex x through a given 

tower St. The next theorem shows how this implies "commutativity" of our 

sewing procedure. 

DEFINITION 5.7. If f f  is a u.t. in O, let Q ( f f )  denote the class of all polytopes 

that are obtained from Q by sewing through ~. 

THEOREM 5.8. For 1 <= i <=p, let ~ be a u.t. in Q. Assume the sets 

U ~ ,  1 <=i<=p, are pairwise disjoint (i.e., A E ~ ,  B E ~ and i~  j imply 
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A ~ B = (~). Then there are points x,, 1 <= i <= p, such that [ Q, {x~ : i ~ F}, x~ ] 

[ Q, { x, : i ~ F} ]( ~ ) [or every subset F of {1, . . . ,p}  and [or every j in {1,.- . ,p} \F .  

PROOF. By Lemma 4.4 and Theorem 4.8 it follows easily, by induction on k, 

1-<k <-p, that there are points x , . . . , x ~  such that the sequence 

(x~, ff~), �9 �9 ", (xp, ~p) satisfies 

(*) [ Q , x ~ , . ' . , x k l ~ [ O , x , , ' . . , x a _ , ] ( f f ~ )  f o r l = k  =<p. 

Theorem 5.8 follows from the next lemma. [] 

LEMMA 5.9. Under the assumptions of Theorem 5.8, if the sequence 

{(xj, ~)~=1 satisfies ( * ), then the sequence {(x~o), ff~))}~l satisfies ( * ) for any 
permutation 7r of {1, . . . ,p}.  

PROOF. For p = I there is nothing to prove. 

Assume p = 2. Consider the faces of [Q, xl, x2] whose universality is asserted 
in Theorem 4.6, parts (3) and (5), with x = x2 and f f  = ~-2. Obviously, each such 

face is a u.f. of [Q, x2], and by Theorem 5.6, [Q, x2] E Q(J-2). Now consider the 

faces of [Q, Xl] whose universality is asserted in Theorem 4.6, parts (3) and (5), 

with x = xl and ~r = if,. By Theorem 4.8, these faces are u.f.s also in [Q, xl, x2], 

and by Theorem 5.6, [Q, x2, x~] E [Q, x2](~-0. Therefore the sequence (x2, 0-2), 
(xl, ifl) satisfies ( �9 ). 

Now assume p > 2. We say that 7r is an admissible permutation of {1,- �9 p} if 

{x,,0), ff,,~))}}'=l satisfies (*)  whenever {(xj, ~)}f=l satisfies (*).  Since the set of 

admissible permutations is closed under multiplication, it suffices to show that 
the transpositions (i, i + 1), 1 =< i < p, are admissible. 

Let x~ , . . . ,  x~ be points such that (*)  holds for (x~, i f , ) , . . . ,  (xp, ~-p). Assume 

1 - i < p .  We shall show that the sequence (x~,~l) , . . . , (x,§ 

(x~,~) , . . . , (xp,  Jp)  also satisfies (*).  The only parts of (* )  that are not 
self-evident for this sequence are [Q' ,x ,+~]EQ'(~+,)  and [Q',x,+~,x,]E 

[Q',  x,+~](~), where Q'  = [Q, x~, . . . ,  x,_~]. But these assertions follow from the 
case p = 2, applied to Q'  and to the sequence (x~, ~ ) ,  (X,+l, ~§ [] 

Note that the proof of Theorem 5.8 given here holds even if the assumption 

that the sets [,.J ~ are pairwise disjoint is replaced by the following slightly 
weaker condition: Assume ~ = {~.~, �9 �9 ~.,,} for 1 =< i -<p, then qb~.,,_~ f) ~j.,, = 

0 and [ ~t,~ f3 ~j. ,  [ < 1 for i ~ j, 1 < i,j <= p. 

It would be interesting to know what is the freedom in choosing the points 

x~, . . . ,  x~, in case we do assume that the towers f f~, . . . ,  3-p have pairwise disjoint 
unions: 
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The following might be true: 
If [Q, x, ] E O ( ~ )  for 1 =< i =< p, then [ Q, {x, : i E F}, xj ] E [ Q, {x, : i E F}] ( ~ )  

for every FC{1,2, . . . ,p} and j ~{1 ,2 , . . - ,p} \F .  

6. Lower bounds 

Repeated application of the sewing construction described in section 4 yields 

lower bounds for the number g(v,2m) of combinatorial types of neighborly 

2m-polytopes with v vertices. 

We start with a cyclic 2m-polytope C(v, 2m) with v vertices, v _-> 2m + 3, and 

"sew" it repeatedly. 

The main results are as follows: 

THEOREM 6.1. g(2m + 4 , 2 m ) >  
(2m + 2)! 

3.2"§ + 2)! " 

(The right-hand side is asymptotic to (X/2/6)(2m/e) m as m---~oo.) 

THEOREM 6.2. g((2m + 1)p +2,2m)_--__~(prn - p ) !  for p = 2,3,--- .  

PROOF OF THEOREM 6.1. Let K be C(2m +3,2m).  Assume that ver tK = 

{at, a2 ,"  ", a2m+3}, and that at, a2 ,"  ", a2m+3, al is the circuit of universal edges of 
K. Aut K, the group of combinatorial automorphisms of K, is precisely the 
dihedral group of order 2(2m + 3) consisting of rotations and reflections of the 

circuit at, a2, �9 �9 ", a2m+3, al. 
Consider pairs (Q,x) where Q is a neighborly 2m-polytope with 2m +4 

vertices and x is a distinguished vertex of Q. Two such pairs (Q, x), (Q', x') are 

considered isomorphic if there is a combinatorial equivalence 

q~ : vert Q ---~ vert Q' with ~(x) = x'~ The number of isomorphism types of such 
pairs is clearly at most (2m +4)g(2m +4,2m).  

Now let us count the number of isomorphism types of pairs (K § x), where K § 
is obtained from K at x by sewing through a u.t. ft. Consider two such pairs 

(K-?,x~), with K? E K ( ~ ) ,  i = 1,2. If these pairs are isomorphic by a mapping 

~o : vert K i ~ v e r t  KI  such that ~p(xl) = x2, then $ = ~ I K is an automorphism 

of K, and $ maps Cg(k, $rl) onto C~(K, if2). It follows from Theorem 5.2 that 
r  = er2. 

The converse is obvious: If if, is mapped onto if2 by an automorphism of K, 

then the pairs (Ki ~, x~), (K~, x2) are isomorphic. 

Thus, the number of isomorphism types of pairs (K+, x) considered above is 

precisely the number of equivalence classes of u.t.s of K under Aut K. 
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Every u.t. in K can be transformed by a suitable rotation to a tower with 

O~ = [at, a2]. With ~t  fixed, O2 can be chosen in 2m + 1 ways, then O3 in 2m - 1 

ways and so on. (Note that K/~, is a cyclic polytope of type C ( 2 ( m - i ) +  

3, 2(m - i)), for 0 _--- i < m.) Therefore the number of u.t.s in K with ~t  = [at, a2] 

is (2m + 1)(2m - 1 ) . . .  7 .5 .  There is only one automorphism ~ of K, except the 

identity, that maps the edge ~1 = [a l ,  a2] onto itself (~b(a,)=a2m§ for 

3 < i  =<2m +3). 

Only one u.t. is fixed by ~k. It follows that the number of equivalence classes of 

u.t.s in K under Aut  K is precisely ~(1 + (2m + 1)(2m - 1 ) . . .  5). 

We conclude that (2m + 4)g (2m + 4, 2m) > 16 II7=1 (2i + 1). [] 

If we repeat the reasoning in the proof of Theorem 6.1 with K =  

C(2m + 3, 2m) replaced by K = C(v - 1, 2m), we conclude that g(v, 2m)---> oo as 

v ~ oo. But the following construction yields a better lower bound. 

PROOF OF THEOREM 6.2. Let K be a cyclic polytope C(v,2m) with v = 

2rap+2 vertices, p=>2. Assume that v e r t K = { a t ,  a2, . . . ,a~} and 

a~, a2," �9 ", av, at is the circuit of u.e.s of K. We say that at and a~ are successive 

vertices if i = i + 1 .  A family t r={o ' ( i , j ) ,  l<=i<=p, i = / - m }  is called a 

partition of vert K if: 

(1) o'(i,]) is a set of two successive vertices of K, 1 _-__ i =< p, 1 <-] =< m. 

(2) tr(i,1) = {a2,, a2,+t}, 1 <-_ i <= p. 
(3) tr(i,j)C{a2p+3, au+,,,..., av}, 1 <= i <-_p, 1 <] <- m. 
(4) Every vertex of K, except at and a2p§ is contained in some tr(i,j). 
From (1)-(4) it follows that the sets tr(i,]) are pairwise disjoint. 

For every partition tr define: ~ = ~ ( t r )  = {[o'(i, 1 ) , . . . ,  o'(i,/)]}TLt, 1 =< i _-__ p. 

For 1 =< i -< p, ~ is a u.t. in K, and the sets U ~ ,  for 1 =< i ___< p, are pairwise 

disjoint. By Theorem 5.8 there are points x~ = x~(o'), 1 =< i =<p, such that 

[K,{xi :]  ~ F},x,] E [K,{xj :] ~ F}](~)  for FC{1 , . . . , p} \{ i} .  

Define K" =[K, xt," ..,x~,]. K" is a neighborly 2m-polytope with v + p  = 

(2m + 1)p + 2 vertices. We shall show that the number of distinct combinatorial 

types of polytopes K ~ is at least one half the number (pro - p)! of partitions. 

Define an equivalence relation on the set of partitions as follows: o" ~ -  if 

K~_~K ". 
In order to complete the proof, it suffices to show that an equivalence class of a 

partition contains at most two elements. 

Assume o- ~ ~-, and let f : K"  --~ K" be a combinatorial equivalence. 

If E is a u.e. of K ~ then either E is a u.e. of K or x; = x~(tr) E v e r t E  for some 

1 _-__i= < p. K ~ is sewed at x, through if, (Theorem 5.8), hence [x~, a2~] and 


