NEIGHBORLY POLYTOPES

BY IDO SHEMER

ABSTRACT

A 2m-polytope O is *neighborly* if each m vertices of Q determine a face. It is shown that the combinatorial structure of a neighborly $2m$ -polytope determines the combinatorial structure of every subpolytope. We develop a construction of "sewing a vertex onto a polytope", which, when applied to a neighborly $2m$ -polytope, yields a neighborly $2m$ -polytope with one more vertex. Using this construction, we show that the number $g(2m + \beta, 2m)$ of combinatorial types of neighborly 2*m*-polytopes with $2m + \beta$ vertices grows superexponentially as $\beta \rightarrow \infty$ (*m* \geq 2 fixed) and as *m* $\rightarrow \infty$ ($\beta \geq$ 4 fixed).

1. Introduction

In this paper we deal with simplicial k -neighborly d -polytopes in general, and in particular with neighborly (i.e. m -neighborly) $2m$ -polytopes.

In sections 2 and 3 we establish general combinatorial properties of such polytopes.

In sections 4 and 5 we present and investigate a construction of "sewing" an additional vertex to a neighborly 2m-polytope.

By repeated use of this construction we obtain in section 6 lower bounds for the number $g(v, 2m)$ of combinatorial types of neighborly $2m$ -polytopes with v vertices, $g(2m + 4,2m)$ increases superexponentially with m, and $g(v, m)$ tends to infinity superexponentially with v for each fixed $m \ge 2$.

The techniques developed in sections 2-5 are used in [11] to prove that a non-cyclic neighborly 2m-polytope with $v \ge 2m + 5$ vertices has at most 2m cyclic subpolytopes with $v - 1$ vertices.

The notation and conventions in this paper follow [6]. In addition, we denote by $[A_1, A_2, \cdots]$ the set conv $(A_1 \cup A_2 \cup \cdots)$, where $A_1, A_2, \cdots \subset R^d$. If $a \in R^d$, then $[\cdots, a, \cdots]$ stands for $[\cdots, \{a\}, \cdots]$.

Received September 2, 1980 and in revised form August 10, 1982

All the polytopes in this paper are simplicial polytopes but not a simplex, unless otherwise specified.

Throughout the paper, the letter P denotes a d-polytope, and O denotes a neighborly 2m-polytope.

We shall use the following characterization of faces $[6, \text{sec}, 2.1, \text{th}, 11]$: If P is a polytope and $T \subset \text{vert } P$, then $[T] \in \mathcal{F}(P)$ iff aff $T \cap [\text{vert } P \setminus T] = \emptyset$.

We say that a point $x \in R^d$ covers a face Φ of P if x lies beyond all the facets of P that include Φ (see [6, ch. 5]).

By a subpolytope of P we mean the convex hull of a subset of vert P .

We suppose that the reader is familiar with the basic facts about neighborly and cyclic polytopes (see [6, see. 4.7 and ch. 7], and [8, pp. 82-93]), in particular with Gale's Evenness Condition.

2. Neighborly polytopes

In this section we are concerned with properties of the boundary complex of neighborly polytopes. The main result is that the combinatorial structure of an m -neighborly $2m$ -polytope determines the combinatorial structure of every subpolytope.

LEMMA 2.1. Intersection lemma. *Let* S_1, \dots, S_k *be subsets of* R^d . If $\bigcap_{i=1}^k [S_i] \neq \emptyset$ *and if a* = $\sum_{i=1}^k \lambda_{i1} a_{i1} \in \bigcap_{i=1}^k [S_i]$ *where* $\lambda_{11} > 0, \lambda_{i1} \geq 0, a_{i1} \in S_1$ $(1 \leq j \leq r_1), \sum_{i=1}^{r_1} \lambda_{i1} = 1$, then *there are subsets* $T_i \subset S_i$ $(1 \leq i \leq k)$ such that

(1)
$$
\bigcap_{i=1}^{k} [T_i] \neq \emptyset,
$$

(2)
$$
\sum_{i=1}^{k} |T_i| \leq (k-1)d + k,
$$

(3)
$$
a_{11} \in T_1.
$$

PROOF. Let

$$
V = R^{(k-1)(d+1)} = (R \times R^d) \times \cdots \times (R \times R^d)
$$

$$
k-1 \text{ times}
$$

For $x \in R^d$ and $1 \le i \le k$ define a point $x^i \in V$ as follows:

$$
x^{1} = (-1, -x, 0, \cdots, 0); \text{ for } 2 \le i \le k - 1, \quad x^{i} = (0, \cdots, 0, 1, x, -1, -x, 0, \cdots, 0);
$$

$$
(i - 2)(d + 1) \qquad (k - i - 1)(d + 1)
$$

finally, $x^k = (0, \dots, 0, 1, x)$. Define also $A = \bigcup_{i=1}^{k} \{x^i : x \in S_i\}.$

For $1 \le i \le k$ there are points $a_{ij} \in S_i$ and numbers $\lambda_{ji} \ge 0$, $1 \le j \le r_i$, such that $\sum_{i=1}^{r} \lambda_{ii} = 1$ and $a = \sum_{i=1}^{r} \lambda_{ii} a_{ii}$. Then

$$
\sum_{i=1}^k \sum_{j=1}^{r_i} \frac{1}{k} \lambda_{ji} = 1, \quad \frac{1}{k} \lambda_{11} > 0 \quad \text{and} \quad \sum_{i=1}^k \sum_{j=1}^{r_i} \frac{1}{k} \lambda_{ji} a_{ji}^i = 0, \quad \text{in } V.
$$

Hence $0_v \in \text{conv } A$. Applying Carathéodory's theorem to the set A in V we find subsets $T_i \subset S_i$, $1 \le i \le k$, such that $a_{11} \in T_1$, $\sum_{i=1}^k |T_i| \le (k-1)(d+1)+1$ and $0_v \in \text{conv}(\bigcup_{i=1}^k \{x^i : x \in T_i\})$. A close look at the definition of x^i reveals that $0_v \in \text{conv}(\bigcup_{i=1}^k \{x^i : x \in T_i\})$ implies $\bigcap_{i=1}^k \text{conv } T_i \neq \emptyset$.

We shall use this lemma later with $k = 2$.

DEFINITION 2.2. Let S be a subset of vert P. IS] is a *missing face* (m.f.) *of P* if $[S]$ is not a face of P but for every proper subset T of S, $[T]$ is a face of P. (Compare [3, def. 2.1].)

We say that $[S]$ is a missing k-face $(k-m.f.)$ of P if $[S]$ is a m.f. of P and $\dim [S] = k$.

REMARK. Definition 2.2 remains meaningful even if we drop the assumption that the polytope P is simplicial. Also, Theorems 2.3, 2.4, 2.5 and their proofs hold for general polytopes.

THEOREM 2.3. If $S \subset V$ = vert P, then $[S]$ is a m.f. of P iff (1) $P \cap aff S = [S]$, (2) $\emptyset \neq [S] \cap [V \setminus S]$ C relint $[S]$, (3) $|S| = \dim |S| + 1$.

PROOF. Suppose [S] is a m.f. of P. Clearly $[S] \subset P \cap \text{aff } S$. If $x \in P \cap$ aff S \[S], then there are points $y \in$ relint [S], $z \in$ relbd [S] such that $z \in (x, y)$. There is a proper face F of [S] such that $z \in F$. F is a face of P. Then $y \in P \backslash F$, $z \in F$, hence $x \notin P$, a contradiction. Hence P \cap aff $S = [S]$. [S] is not a face of P, hence $af(S \cap [V \setminus S] \neq \emptyset$. So $[S] \cap [V \setminus S] = P \cap aff S \cap [V \setminus S] = aff S \cap$ $[V\setminus S]\neq\varnothing$.

If $T \subseteq S$ then $[T]$ is a face of P, hence a face of $[S]$. So $[S]$ is a simplex and $\dim [S] = |S| - 1.$

If $x \in \text{relbd}[S]$, then $x \in [T]$ for some $T \subsetneq S$. $[T] \in \mathcal{F}(P)$, hence $[T] \cap$ $[V\setminus T]=\emptyset$. So $x \notin [V\setminus T]$ and *a fortiori* $x \notin [V\setminus S]$. Therefore $[V\setminus S]\cap$ relbd $[S] = \emptyset$, hence $[V \setminus S] \cap [S] \subset$ relint $[S]$.

Now we turn to the converse part of the theorem. Suppose $S \subset V$ satisfies (1), (2), (3). To prove that [S] is a m.f. of P it clearly suffices to show that if $T \subsetneq S$ and $|T|=|S|-1$, then $|T|\in\mathcal{F}(P)$. Let $x\in S$, $T=S\setminus\{x\}.$

(A) $P \cap \text{aff } T = P \cap \text{aff } S \cap \text{aff } T = [S] \cap \text{aff } T = [T]$.

(B) We claim that $[T] \cap [V \setminus T] = \emptyset$. If not, then there is a point $a \in [T] \cap [V \setminus S, x]$. There is a point $b \in [V \setminus S]$ such that $a \in [b, x]$, $b \in$ aff $\{a, x\}$ since $a \neq x$. It follows that $b \in \text{aff } S \cap [V \setminus S] = [S] \cap [V \setminus S]$ Crelint [S]. Since $a \in [b, x]$, $a \neq x$, we obtain $a \in \text{relint}[S]$, a contradiction. From (A) and (B) we get

aff
$$
T \cap [V \setminus T] = P \cap \text{aff } T \cap [V \setminus T] = [T] \cap [V \setminus T] = \emptyset
$$
.

THEOREM 2.4. A k-neighborly d-polytope P has no j -m.f. with $j < k$ or $j > d - k$.

PROOF. It is obvious that P has no j-m.f. with $j < k$. Suppose S \subset vert $P = V$ and [S] is a j-m.f. of P. Then $[S] \cap [V \setminus S] \neq \emptyset$ (Theorem 2.3). Applying the intersection Lemma 2.1 we find subsets $T_1 \subset S$, $T_2 \subset V \setminus S$ such that $[T_1] \cap$ $[T_2] \neq \emptyset$ and $[T_1] + |T_2| \leq d + 2$. $T_1 = S$, because otherwise $[T_1]$ is a face of P, and then

$$
[T_1] \cap [T_2] \subset [T_1] \cap [V \setminus T_1] = \emptyset.
$$

 $|T_2| \ge k + 1$, because P is k-neighborly. Therefore $j + 1 = |S| = |T_1| \le$ $(d+2)-|T_2| \leq (d+2)-(k+1), j \leq d-k.$

An immediate consequence of Theorem 2.4 is the well-known fact:

THEOREM 2.5. If *P* is a k-neighborly d-polytope and $k > \frac{1}{2}d$, then *P* is a *simplex.*

There are many problems concerning the determination of $\mathcal{F}(P)$ from some partial information about $\mathcal{F}(P)$. A natural question is: under what circumstances does skel ${}_{i}\mathcal{F}(P)$ determine $\mathcal{F}(P)$?

THEOREM 2.6. If P is a simplicial k-neighborly d-polytope, then $\mathcal{F}(P)$ is *determined by its* $(d - k)$ *-skeleton; moreover, if S* \subseteq *vert P and* $|S| > d - k + 1$ *, then* $[S] \in \mathcal{F}(P)$ *iff* $[T] \in \mathcal{F}(P)$ *for every* $T \subset S$ *with* $|T| \le d - k + 1$.

PROOF. Assume $S \subsetneq$ vert P, $|S| \geq d - k + 2$. If $[S] \in \mathcal{F}(P)$, then $T \subset S$ implies $[T] \in \mathcal{F}(P)$, since P is simplicial. If $[S] \notin \mathcal{F}(P)$, then there is a set $T \subset S$, such that $[T]$ is m.f. By Theorem 2.4, $|T| \le d - k + 1$.

An immediate consequence is

THEOREM 2.7. If Q is an m-neighborly 2m-polytope then skel_mQ determines $\mathcal{F}(Q)$.

THEOREM 2.8. *Let P, P+ be k-neighborly d-polytopes, not necessarily simplicial. Suppose* vert $P = V$, vert $P^+ = V \cup \{x\}$, $x \notin P$, $T \subset V$, dim $[T] \ge d - k$. If for *every* $S \subsetneq T$, $[S, x] \in \mathcal{F}(P^+)$, then $[T] \subset \text{bd } P$.

REMARK. The assumption, that $[S, x] \in \mathcal{F}(P^+)$ for all $S \subsetneq T$, implies that $T \cup \{x\}$ is affinely independent and therefore dim $|T| = |T| - 1$.

PROOF. If $S \subsetneq T$ then $[S, x] \in \mathcal{F}(P^*)$, hence $[S] \in \mathcal{F}(P)$. Therefore $[T]$ is either a face or a m.f. of P. Assume [T] is a m.f. of P. Hence dim $[T] \leq d - k$ (Theorem 2.4). But dim $[T] \ge d - k$, hence dim $[T] = d - k$ and $[T] = d - k + 1$. If $[V \setminus T] \cap$ relint $[x, T] \neq \emptyset$ then from the intersection Lemma 2.1 we obtain subsets $S \subset T$ and $R \subset V \setminus T$ that $[R] \cap [x, S] \neq \emptyset$ and $|R|+|S|+1 \leq d+2$. $[R]\notin\mathcal{F}(P^*)$, hence $|R|\geq k+1$. $|S|\leq d+1-|R|\leq d-k$. Hence $S\subsetneq T$. $[x, S] \in \mathcal{F}(P^+)$ contradicts $[x, S] \cap [R] \neq \emptyset$. Therefore $[V \setminus T] \cap$ relint $[x, T] =$ \varnothing

Let H be a hyperplane that separates $V\setminus T$ from $[x, T]$, $V\setminus T \subset H^-$, $T \cup \{x\} \subset H^+$. [T] is a m.f. of P, hence there is a point $a \in \text{relint}[T] \cap [V \setminus T]$ (Theorem 2.3). It follows that $a \in H$, hence $T \subset H$. So $V \subset H^{-}$, $[T] \subset bd P$.

COROLLARY **2.9.** *If P is a simplicial polytope then the hypotheses of Theorem* 2.8 *imply* $[T] \in \mathcal{B}(P) = \mathcal{F}(P) \setminus \{P\}.$

We conclude this section with the following result: The combinatorial structure of an m -neighborly $2m$ -polytope determines the combinatorial structure of every subpolytope. A somewhat different proof of this result appears in $[10]$.

THEOREM 2.10. Let Q, Q^+ be m-neighborly 2m-polytopes, vert Q^+ = vert $O \cup \{x\}$, $x \notin Q$. Then $\mathcal{F}(Q^+)$ determines $\mathcal{F}(Q)$.

Theorem 2.10 is an immediate consequence of Theorem 2.7 and the following lemma:

LEMMA 2.11. *Under the assumption of Theorem 2.10, skel_m* $\mathcal{F}(Q^+)$ *determines* skel_m $\mathcal{F}(Q)$; *moreover, if* $T \subset \text{vert } Q$, $|T| = m + 1$, *then* $|T| \in \mathcal{F}(Q)$ *iff either*

- (1) $[T] \in \mathcal{F}(Q^*)$, or
- (2) $[T] \notin \mathcal{F}(Q^+),$ *but* $[x, S] \in \mathcal{F}(Q^+)$ for every $S \subsetneq T$.

PROOF. Let $T \subset \text{vert } Q, |T| = m + 1$. If (1) holds then obviously $[T] \in \mathcal{F}(Q)$. If (2) holds then Corollary 2.9 implies $[T] \in \mathcal{F}(Q)$. Conversely, if $[T] \in \mathcal{F}(Q)$ but $[T] \notin \mathcal{F}(O^+)$ then x lies beyond all the facets of O that include T. Therefore, if $S \subset T$, then x lies beyond some facet of P that includes S. But if $S \subsetneq T$, then $[S] \in \mathcal{F}(Q^+)$. Therefore x lies beneath at least one facet of P that includes S, hence $[S, x] \in \mathcal{F}(Q^+)$ (see [6, section 5.2]).

The following alternative formulation of Theorem 2.10 will be useful in the sequel:

THEOREM 2.12. *Let* Q_1 , Q_2 be m-neighborly 2m-polytopes and let the bijection φ : vert $Q_1 \rightarrow$ vert Q_2 *be a combinatorial equivalence between* Q_1 *and* Q_2 *.*

If $A \subset \text{vert } Q_1$, *then the restriction of* φ *to A is a combinatorial equivalence between* [A] *and* $[\varphi(A)]$.

3. Universal [aces

DEFINITION 3.1. Suppose $\Phi \in \mathcal{B}(P) = \mathcal{F}(P) \setminus \{P\}$. Φ is a *u-universal face* $(u-u.f.)$ *of P* if $[\Phi, S] \in \mathcal{B}(P)$ for every S \subset vert P with $|S| \le u$.

Define $\mathcal{B}(P, u) = {\Phi \in \mathcal{B}(P) : \Phi \text{ is a } u$ -u.f. of P. Note that $\mathcal{B}(P, 0) = \mathcal{B}(P)$, and $\emptyset \in \mathcal{B}(P,k)$ ift P is k-neighborly.

DEFINITION 3.2. Φ is a *universal face* (u.f.) *of P* if $\Phi \in \mathcal{B}(P, u)$ with $u = \left[\frac{1}{2}(d-\dim \Phi - 1)\right] = \left[\frac{1}{2}(d - |\text{vert }\Phi|)\right]$. A 1-dimensional u.f. is called a *universal edge* (u.e.).

Definitions 3.1 and 3.2 can be reformulated using the notion of a quotient polytope P/Φ introduced in [8, ch. 2, th. 16]. (A quotient polytope P/Φ is a polytope K whose face lattice $\mathcal{F}(K)$ is isomorphic to the upper segment $[\Phi, P]$ of $\mathcal{F}(P)$.)

DEFINITION 3.1^{*}. $\Phi \in \mathcal{B}(P, u)$ iff either (a) $u = 0$ and $\Phi \in \mathcal{B}(P)$, or (b) $u > 0$ and the quotient polytope P/Φ is u-neighborly, with $|\text{vert } P| - |\text{vert } \Phi|$ vertices.

REMARK. dim $P/\Phi = \dim P - \dim \Phi - 1 = \dim P - |\text{vert }\Phi|$. Since we assume that P is not a simplex, $|\text{vert } P | > \dim P + 1$. Therefore, if $\Phi \in \mathcal{B}(P, u), u > 0$, then $|vert P/\Phi| = |vert P| - |vert \Phi| > \dim P/\Phi + 1$, i.e., P/Φ is not a simplex, and therefore $u \leq \frac{1}{2}$ dim $P/\Phi \leq \frac{1}{2}$ dim P.

DEFINITION 3.2^{*}. Φ is a u.f. of P iff either (a) Φ is a facet of P, or (b) $\Phi \in \mathcal{B}(P)$ and P/Φ is a neighborly (i.e., $[\frac{1}{2}$ dim $P/\Phi]$ -neighborly) polytope with $|vert P| - |vert \Phi|$ vertices.

One can use Definitions 3.1 and 3.2 in the case where P is a simplex. The various remarks that follow these definitions remain valid if we adhere to the convention that a simplex Δ is u-neighborly for $0 \le u \le \dim \Delta$ only.

THEOREM 3.3. Let P be a k-neighborly d-polytope. If $\Psi_i \in \mathcal{B}(P, u_i)$ for $i = 1, 2$ and $t = u_1 + u_2 + k - d \ge 0$, then $\Psi = [\Psi_1, \Psi_2] \in \mathcal{B}(P, t)$.

PROOF. Assume $A \subset \text{vert } P \setminus \Psi$ and $[\Psi, A] \notin \mathcal{B}(P)$. It suffices to show that $|A|>t$.

There are three pairwise disjoint sets $B \subset A$, $T_1 \subset \text{vert } \Psi_1$, $T_2 \subset \text{vert } \Psi_2$ such that $[T_1, T_2, B]$ is a m.f. of P. By Theorem 2.4, $|T_1| + |T_2| + |B| \le d - k + 1$. $[T_1, \Psi_2, B] \not\in B(P)$, hence $|T_1| + |B| \ge u_2 + 1$. By the same reasoning $|T_2|+|B| \ge u_1+1$. Therefore $d-k+1+|B| \ge |T_1|+|T_2|+2|B| \ge u_1+u_2$ $+2$, hence $|A| \ge |B| \ge u_1 + u_2 + k - d + 1 = t + 1$.

The next theorem is a very useful special case of Theorem 3.3. From this point onward, the letter Q will always denote an m -neighborly $2m$ -polytope.

THEOREM 3.4. Let Ψ_1, \dots, Ψ_i be pairwise disjoint universal faces of Q. If Ψ_1 *has 2v_i* vertices $(1 \le i \le l)$ and $v_1 + \cdots + v_l \le m$, then $\Psi = [\Psi_1, \cdots, \Psi_l]$ is a u.f. of *Q.*

REMARK. If Φ is a face of Q with 2*j* vertices, then Φ is a u.f. iff Φ is an $(m - j)$ -u.f.

PROOF. Theorem 3.4 in its full generality follows from the case $l = 2$ by induction on *l*. For $l = 2$, apply Theorem 3.3 with $d = 2m$, $k = m$, $u_1 = m - v_1$, $u_2 = m - v_2.$

Let $C = C(v, 2m)$ be a cyclic $2m$ -polytope with v vertices. There is a natural cyclic order on vert C. Assume that $a_1, a_2, \dots, a_v, a_1$ are the vertices of C in this order. From Gale's Evenness Condition it follows that $[a_i, a_{i+1}]$ ($1 \le i < v$) and $[a_n, a_1]$ are u.e.s of *C*, and if $v \ge 2m + 3$ then $C(v, 2m)$ has no other u.e.s. See also [3, section 3]. The existence of a hamiltonian circuit of u.e.s characterizes cyclic polytopes:

THEOREM 3.5. Assume $|\text{vert } Q | \ge 2m + 3$. If Q has a simple circuit of length v *consisting of universal edges, then* $Q \cong C(v, 2m)$.

PROOF. *Case I:* $v < 2m + 3$.

Choose $2m + 3 - v$ vertices of Q which are not in the given circuit, and add them to the vertices of the circuit. The resulting set spans a subpolytope Q' of Q . Q' is neighborly, hence $Q' \cong C(2m + 3,2m)$ (see [6, th. 7.2.3]). The edges of the

given circuit are u.e.s in Q' , but Q' , being a cyclic polytope with $2m + 3$ vertices, has only one simple circuit of u.e.s of length $2m + 3$, a contradiction.

Case II: $v \ge 2m + 3$.

Suppose that the vertices of $C(v, 2m)$, in their natural cyclic order, are a_1, \dots, a_v, a_1 . Let φ be a 1 : 1 mapping of vert $C(v, 2m)$ into vert Q, which maps the cycle a_1, \dots, a_v, a_1 onto the given circuit of universal edges of Q. Gale's Evenness Condition and Theorem 3.4 imply that φ induces a 1 : 1 mapping of the set of facets of $C(v, 2m)$ into the set of facets of Q. By Lemma 3.6 below, φ is a combinatorial equivalence between $C(v, 2m)$ and Q.

LEMMA 3.6. *Suppose* φ : vert $P \rightarrow$ vert P' is a bijection. If for every facet F of $P, F' = [\varphi(\text{vert } F)]$ *is a facet of P', then* φ *is a combinatorial equivalence between P and P'.*

PROOF. Since the incidence graph of facets and subfacets of the polytope P' is connected, it is enough to verify the following assertion:

If F', G' are two adjacent facets of P' (i.e., $F' \cap G'$ is a subfacet of P') and if $F' = \varphi(F)$ for some facet F of P, then $G' = \varphi(G)$ for some facet G of P.

Indeed, consider the set $\varphi^{-1}(\text{vert } (F' \cap G'))$. Since P and P' are simplicial, this is the set of vertices of a subfacet H of P . H is included in precisely two different facets F, G of P. Since $\varphi(F) = F'$, $\varphi(G)$ must be G'.

REMARK. Lemma 3.6 holds even without assuming that P and P' are simplicial. The proof in the general case is slightly more involved, and uses induction on dim P.

As we mentioned above, every proper face is a 0-u.f. The next two theorems can be considered as generalizations of Theorem 2.6, and Corollary 2.9 to Theorem 2.8.

THEOREM 3.7. Assume P is a k-neighborly d-polytope, $S \subseteq \text{vert } P$. [S] is a *u*-u.f. *of P iff* $[T]$ *is a u-u.f. of P for every* $T \subset S$ with $|T| \le d - k - u + 1$.

PROOF. If $[S] \not\in \mathcal{B}(P, u)$ then there is a set $A \subset \text{vert } P \setminus S$, $|A| \le u$ with $[S, A] \not\in \mathcal{B}(P)$. There are sets $T \subset S$, $B \subset A$ such that $[T, B]$ is a m.f. of P, hence $|T|+|B| \leq d-k+1$ (Theorem 2.4).

Case I: $|T| \leq d - k - u + 1$. Then $[T] \notin \mathcal{B}(P, u)$ a contradiction.

Case II: $|T| > d - k - u + 1$.

THEOREM 3.8. Assume P, P^+ are k-neighborly d-polytopes, vert P^+ = vert $P \cup \{x\}$, $x \notin P$, $\emptyset \neq A$ \subset vert P *and* $|A| > d - k - u$.

If $[A \setminus \{q\}, x] \in \mathcal{B}(P^+, u)$ for every $q \in A$ then $[A] \in \mathcal{B}(P, u)$.

PROOF. We have to show that if $W \subset \text{vert } P \setminus A$, $|W| \le u$, then $[A, W] \in \mathcal{B}(P)$.

If $|W| < u$, choose any $q \in A$; then $[A, W, x] =$ $[A \setminus \{q\}, x, W \cup \{q\}] \in \mathcal{B}(P^+),$ hence $[A, W] \in \mathcal{B}(P)$. Now assume that $|W| =$ u. Then $|A \cup W| = |A| + u > d - k$. By Corollary 2.9 it suffices to prove that $[S, x] \in \mathcal{B}(P^+)$ for all $S \subsetneq A \cup W$.

Assume $S \subseteq A \cup W$. If $S \not\supseteq A$ choose a point $q \in A \setminus S$; then $[A \setminus \{q\}, x, W] \in$ $\mathcal{B}(P^*)$, $S \subset (A \setminus \{q\}) \cup W$, hence $[S, x] \in \mathcal{B}(P^*)$. If $S \supset A$, then $W \cap S \subsetneq W$. Choose any $q \in A$; then $[S, x] = [A \setminus \{q\}, x, (W \cap S) \cup \{q\}] \in \mathcal{B}(P^+).$

COROLLARY 3.9. *Let* Q , Q^+ *be neighborly 2m-polytopes, vert* Q^+ = vert Q $\cup \{x\}$, $x \notin Q$. If $\emptyset \neq A$ \subset vert Q, $|A| \geq 2$ *and if* $[A \setminus \{q\}, x]$ *is a u.f. of* Q^+ for every $q \in A$, then $[A]$ *is a u.f. of Q.*

PROOF. $|A| = 2j$ with $j \ge 1$ or $|A| = 2j - 1$ with $j \ge 2$. In both cases apply Theorem 3.8 with $d = 2m$, $k = m$, $u = m - j$.

We shall use this corollary later with $|A| = 2$.

THEOREM 3.10. If $|vert Q| \ge 2m + 3$, then the graph of the universal edges of *Q* is either a hamiltonian circuit, or a union of disjoint simple paths.

PROOF. In view of Theorem 3.5, it is sufficient to prove that no vertex of Q is included in three u.e.s of Q.

Suppose x, a, b, c are distinct vertices of Q, and $[x, a]$, $[x, b]$, $[x, c]$ are u.e.s of Q. Choose a set A of $2m-1$ vertices of Q other than x, a, b, c, and define $Q' = [x, a, b, c, A]$. Q' is a neighborly 2*m*-polytope with 2*m* + 3 vertices, hence $Q' \cong C(2m+3,2m)$. [x, a], [x, b], [x, c] are u.e.s of Q', but no vertex of $C(2m + 3,2m)$ is included in three u.e.s, a contradiction.

4. The sewing construction

In this section we describe a construction, called sewing, and some related notions. This construction, first introduced by the author in [9], will play a central role in the sequel.

The "facet-splitting" operation of Barnette [5] is, in a sense, dual to our sewing construction. We shall discuss the relationship between these two constructions in section 7.4.

DEFINITION 4.1. If $\Psi \in \mathcal{F}(P)$ and M \subset vert $P \setminus \Psi$, then we say that M is a *missing face of P relative to* Ψ *if* $[M, \Psi] \notin \mathcal{B}(P)$, but $[M', \Psi] \in \mathcal{B}(P)$ for every $M' \subsetneq M$.

Define: $M(P/\Psi) = \{M : M$ is a m.f. of P relative to $\Psi\}$. Finally define: $\mathcal{M}(P) = \mathcal{M}(P/\emptyset).$

PROPOSITION 4.2. (1) $M(P/P) = \{\emptyset\}$.

(2) If F is a facet of P, then $M(P/F) = \{ \{q\} : q \in \text{vert } P \setminus F \}.$

(3) $M \in \mathcal{M}(P)$ iff $[M]$ is a m.f. of P.

(4) If $M \in \mathcal{M}(P/\Psi)$, then there is a set S in $\mathcal{M}(P)$ such that $M \cup \Psi \supset S \supset M$.

(5) If $\Psi \in \mathcal{F}(P)$, then for every vertex b in vert $P \setminus \Psi$ there are sets M and N in $M(P/\Psi)$ such that $b \in M$ and $b \notin N$.

If Q is a neighborly 2m-polytope then the following properties hold too:

(6) If $M \in \mathcal{M}(Q)$ then $|M| = m + 1$.

(7) If Ψ is a u.f. of Q, $|vert \Psi| = 2j$ and $M \in \mathcal{M}(Q/\Psi)$, then $|M| = m - j + 1$.

(8) Ψ is a *u*-u.f. of Q iff $|M \cap \Psi| \leq m - u$ for every $M \in \mathcal{M}(Q)$, or equival*ently, if* $|M \Psi| \ge u + 1$ *for every M* $\in \mathcal{M}(Q)$ *.*

In particular

(9) E is a u.e. of Q iff no element of $M(Q)$ includes vert E .

PROOF. (1)-(4) follow immediately from Definitions 4.1 and 2.2. In order to establish (5), take $M = \{b\} \cup C$, where C is a minimal subset (with respect to inclusion) of vert $P \setminus (\Psi \cup \{b\})$ such that $[b, C, \Psi] \notin \mathcal{B}(P)$ but $[C, \Psi] \in \mathcal{B}(P)$, and take N to be a minimal subset of vert $P \setminus (\Psi \cup \{b\})$ such that $[N, \Psi] \notin \mathcal{B}(P)$.

(6) and (7) follow from Theorem 2.4, and (6) implies (8) and (9). \Box

DEFINITION 4.3. A *tower in P* is a strictly increasing sequence $\mathcal{T} = {\{\Phi_i\}}_{i=1}^k$ of non-empty proper faces of P. Sometimes we shall adjoin the empty face as a first element Φ_0 of \mathcal{T} . If $\Phi \in \mathcal{F}(P)$, denote by \mathcal{F}_{Φ} the set of all facets of P which include Φ . We denote \mathcal{F}_{Φ_i} by \mathcal{F}_i (in order to avoid double subscripts). Note that $\mathscr{F}_1 \supset \mathscr{F}_2 \supset \cdots \mathscr{F}_k$. Define $\mathscr{C} = \mathscr{C}(P, \mathscr{T}) = \mathscr{F}_1 \setminus (\mathscr{F}_2 \setminus (\cdots \setminus \mathscr{F}_k) \cdots)$. It is easy to see that $C = (\mathscr{F}_1 \setminus \mathscr{F}_2) \cup (\mathscr{F}_3 \setminus \mathscr{F}_4) \cup \cdots$ where the last term in the union is $\mathscr{F}_{k-1} \setminus \mathscr{F}_k$ if k is even or \mathscr{F}_k if k is odd. With the convention that $\mathscr{F}_i = \emptyset$ and $\Phi_i = P$ for $j > k$ we can simply write $\mathscr{C} = \bigcup_{i=1}^{\infty} (\mathscr{F}_{2i-1} \setminus \mathscr{F}_{2i})$ and similarly $\mathscr{F}_0\setminus\mathscr{C}=\bigcup_{i=0}^\infty(\mathscr{F}_{2i}\setminus\mathscr{F}_{2i+1}),$ where \mathscr{F}_0 is the set of all facets of P.

We say that $\mathcal{T} = {\Phi_i}_{i=1}^m$ is a *universal tower* (u.t.) *in Q* if

(1) Q is a neighborly $2m$ -polytope,

(2) Φ_i is a u.f. of Q for $1 \leq i \leq m$,

(3) $|\text{vert }\Phi_i|=2j$ for $1\leq i\leq m$.

Let $\mathscr D$ be a set of facets of P. We say that a point $x \in R^d$ lies exactly beyond $\mathscr D$ *with respect to P* if x lies beyond every facet of P that is in $\mathcal D$ and beneath every other facet of P . If it is clear from the context what is the polytope P , we omit the phrase "with respect to P".

LEMMA 4.4. Let $\mathcal T$ be a tower in P, $\mathcal C = \mathcal C(P, \mathcal T)$. Then there is a point $x \in R^d$ which lies exactly beyond $\mathscr C$.

PROOF. By induction on the height k of \mathcal{T} . If $k = 0$, define $\mathcal{C} = \emptyset$. In that case every point $x \in \text{int } P$ lies exactly beyond \mathscr{C} . If $k \ge 1$, let $\mathscr{T}' = \mathscr{T} \setminus \{ \Phi_i \}$ and $\mathscr{C}' = \mathscr{C}(P, \mathscr{T}')$. By the induction hypothesis, there is a point $x' \in R^d$, which lies exactly beyond \mathscr{C}' . Note that $\mathscr{C}' \subset \mathscr{F}_1$ and $\mathscr{C} = \mathscr{F}_1 \setminus \mathscr{C}'$. Choose a point $p \in$ relint Φ_1 and let $x = (1 + \varepsilon)p - \varepsilon x'$. If ε is positive and sufficiently small, then x lies exactly beyond \mathscr{C} .

The construction which we have just described will enable us to construct a large variety of neighborly polytopes by adding new vertices to existing neighborly polytopes.

From here until the end of section 4 we adhere to the following convention:

CONVENTION 4.5. Q is a neighborly $2m$ -polytope, Q is not simplex, $\mathcal{T} =$ ${\Phi_i}_{i=1}^m$ is a u.t. in Q, $\mathscr{C} = \mathscr{C}(Q, \mathscr{T})$, x lies exactly beyond \mathscr{C} with respect to Q, and $Q^+ = [Q, x]$.

Define S_i = vert $\Phi_i \setminus \Phi_{i-1}$ for $j = 1, 2, \dots, m + 1$ (recall that $\Phi_0 = \emptyset$ and $\Phi_i = Q$ for $j > m$).

THEOREM 4.6. (1) Q^+ is a simplicial 2m-polytope and vert Q^+ = vert $Q \cup \{x\}$.

(2) Q^+ is neighborly.

(3) If $0 < j \leq m$ is even, then Φ_i is a u.f. of Q^+ .

(4) If $0 < j \leq m$ is odd, then Φ_i is not a u.f. of Q^+ , but if $j < m$ then Φ_i is still a *face of* Q^+ *.*

(5) If $a \in S_i$ for some $1 \leq j \leq m$, then $[\Phi_{i-1}, a, x]$ is a u.f. of Q^+ .

LEMMA 4.7. (1) vert Q^+ = vert $Q \cup \{x\}$.

(2) If M \subset vert $Q \cup \{x\}$, then $M \in \mathcal{M}(Q^+)$ iff either (a) $M = \bigcup_{\nu=1}^j S_{2\nu-1} \cup A$ for *some integer* $0 \leq j \leq (m+1)/2$ *and some A* $\in \mathcal{M}(Q/\Phi_{2j})$ *, or (b)* $M =$

 $\bigcup_{\nu=1}^{j} S_{2\nu} \cup A \cup \{x\}$ *for some integer* $0 \leq i \leq m/2$ *and some set* $A \in \mathcal{M}(Q/\Phi_{2i+1})$. (Note that $\Phi_{m+1} = Q$ and $\mathcal{M}(Q, Q) = {\emptyset}.$)

PROOF. *Step* 1: We show that if M is of type (a), then $[M] \notin \mathcal{B}(Q^+)$. Assume $M = \bigcup_{\nu=1}^{j} S_{2\nu-1} \cup A, A \in \mathcal{M}(Q/\Phi_{2j}), 0 \leq j \leq (m+1)/2$. If $j = 0$, then $[M] = [A] \not\in \mathcal{B}(Q)$. Assume $j > 0$, hence $S_1 \subset M$.

Let F be a facet in $\mathcal{F}_{[M]}$, and let μ be the maximal integer ν such that $1 \le \nu \le i$ and $F \in \mathscr{F}_{2\nu-1}$. Then $F \notin \mathscr{F}_{2\mu}$, since otherwise, if $\mu < j$ then $F \in \mathscr{F}_{2\mu+1}$, because $S_{2\mu+1} \subset M \subset F$, and if $\mu = j$ then $F \supset A \cup \Phi_{2i}$, in contradiction to $A \in$ $M(Q/\Phi_{2i})$. Therefore $\mathscr{F}_{(M)} \subset \bigcup_{\nu=1}^{i} (\mathscr{F}_{2\nu-1} \setminus \mathscr{F}_{2\nu}) \subset \mathscr{C}$. It follows that if M is of type (a), then $[M] \not\in \mathcal{B}(O^+)$.

Step 2: We show that if M is of type (b), then $[M] \notin \mathcal{B}(Q^*)$. Define $M^- = M \setminus \{x\}$. The rest of step 2 is similar to step 1: we prove that $\mathscr{F}_{M-1} \subset$ $\bigcup_{\nu=0}^{j}$ ($\mathscr{F}_{2\nu} \setminus \mathscr{F}_{2\nu+1}$) $\subset \mathscr{F}_0 \setminus \mathscr{C}$ and conclude that $[M] \notin \mathscr{B}(Q^+).$

Step 3: Now we show that if $S \subset \text{vert } Q$ and $[S] \notin \mathcal{B}(Q^+)$, then S includes a set M of type (a). Since $[S] \notin \mathcal{B}(Q^+),$ it follows that if $F \in \mathcal{F}_0$ and $F \supset S$, then $F\in\mathscr{C}$.

Let *j* be the first nonnegative integer such that $[S, \Phi_{2i}] \notin \mathcal{B}(Q)$. Clearly $2j \leq m + 2$. Since $\Phi_m \in \mathcal{B}(Q^+)$ for even m, it follows that $2j \leq m + 1$.

We proceed to show that $S_{2\nu-1} \subset S$ for $1 \leq \nu \leq j$. Since $[S, \Phi_{2\nu-2}] \in \mathcal{B}(Q)$, if $S_{2\nu-1} \not\subset S$ then Q has a facet F such that $F \supset S \cup \Phi_{2\nu-2}$, $F \not\supset \Phi_{2\nu-1}$, hence $F \not\in \mathscr{C}$ -- a contradiction. Since $[S, \Phi_{2i}] \notin \mathcal{B}(Q)$, S includes a set $A \in \mathcal{M}(Q/\Phi_{2i})$. $S \supset M = \bigcup_{\nu=1}^{j} S_{2\nu-1} \cup A$, M is of type (a). From this it follows that vert Q \subset vert Q^+ . $x \in$ vert Q^+ , by the definition of x, hence assertion (1) follows.

Step 4: Now prove that if $x \in S \subset \text{vert } Q^+$ and $[S] \not\in \mathcal{B}(Q^+)$, then S includes a set M of type (a) or (b). Denote $S^- = S \setminus \{x\}$. If $[S^-] \notin \mathcal{B}(Q^+)$, then S^- includes a set of type (a), by step 3. If $[S^-] \in \mathcal{B}(Q^*)$, then one can show, as in step 3, that S includes a set of type (b).

Step 5: Note that all the sets of type (a) or (b) have $m + 1$ elements (see 4.2(7)).

Step 6: Let S be an element of $M(Q⁺)$. S includes a set M of type (a) or (b) (by steps 3, 4). But $[M] \notin \mathcal{B}(Q^+)$ (by steps 1, 2). Hence $M = S$, and S is of type (a) or (b).

Step 7: Conversely, assume M is of type (a) or (b). $[M] \notin \mathcal{B}(Q^+)$, hence M includes a set $S \in \mathcal{M}(Q^+)$. By step 6, S is of type (a) or (b), hence $|S| = |M| =$ $m + 1$. It follows that $M = S \in \mathcal{M}(Q^+)$.

PROOF OF THEOREM 4.6. (1) and (2) follow immediately from Lemma 4.7.

(3) Assume $0 < 2p \le m$. By 4.2(8), in order to prove that Φ_{2p} is a u.f. of Q^+ , it suffices to show that $|M \setminus \Phi_{2p} | \ge m - 2p + 1$ or, equivalently, $|M \cap \Phi_{2p} | \le 2p$ for every $M \in \mathcal{M}(Q^+).$

Case I: Assume $M = S_1 \cup \cdots \cup S_{2i-1} \cup A$, $A \in \mathcal{M}(Q/\Phi_{2i})$. If $j \leq p$, then $|M \setminus \Phi_{2p}| = |A \setminus \Phi_{2p}| \ge m - 2p + 1$, since $[A, \Phi_{2p}] \not\in \mathcal{B}(Q)$. If $j \ge p$, then $|M \cap \Phi_{2p}| = |S_1 \cup \cdots \cup S_{2p-1}| = 2p.$

Case II: Assume $M = S_2 \cup \cdots \cup S_{2i} \cup A \cup \{x\}, A \in \mathcal{M}(Q/\Phi_{2i+1})$. If $i < p$, then $|M \backslash \Phi_{2p} | = 1 + |A \backslash \Phi_{2p} | \ge m - 2p + 2$. If $j \ge p$, then $|M \cap \Phi_{2p}| = 2p$.

(4) Assume $1 \leq 2p+1 \leq m$. Take $M = S_1 \cup \cdots \cup S_{2p+1} \cup A$ for some $A \in \mathcal{M}(Q/\Phi_{2p+2})$. Then $M \in \mathcal{M}(Q^+), |\Phi_{2p+1} \cap M| = 2p + 2$, hence Φ_{2p+1} is not a u.f. of Q^+ . If *j* is odd and $\lt m$, then $\Phi_{i+1} \in \mathcal{B}(Q^+)$, hence $\Phi_i \in \mathcal{B}(Q^+)$. In fact, Φ_i is an $(m-j-1)$ -u.f. of Q^+ .

(5) *Case I.* Assume $2 \leq 2p \leq m$, $a \in S_{2p}$ and consider $\Psi = [\Phi_{2p-1}, a, x]$. *Subcase Ia.* $M = S_1 \cup \cdots \cup S_{2j-1} \cup A$, $A \in \mathcal{M}(Q/\Phi_{2j})$. If $j \leq p$, then $|M \setminus \Psi| \geq$ $|A \setminus \Phi_{2p}| \ge m - 2p + 1$. If $j \ge p$, then $|M \cap \Psi| = |S_1 \cup \cdots \cup S_{2p-1}| = 2p$.

Subcase Ib. $M = S_2 \cup \cdots \cup S_{2i} \cup A \cup \{x\}, A \in \mathcal{M}(Q/\Phi_{2i+1})$. If $i < p$, then $|M \setminus \Psi| \geq |A \setminus \Phi_{2p}| \geq m-2p+1.$ If $j \geq p$, then $|M \cap \Psi| =$ $|S_2 \cup \cdots \cup S_{2p-2} \cup \{a, x\}| = 2p$.

Therefore Ψ is $(m - 2p)$ -universal in P^+ .

Case II. Assume $1 \leq 2p + 1 \leq m$, $a \in S_{2p+1}$, and consider $\Psi = [\Phi_{2p}, a, x]$. *Subcase IIa.* $M = S_1 \cup \cdots \cup S_{2j-1} \cup A$, $A \in \mathcal{M}(Q/\Phi_{2j})$. If $j \leq p$, then $|M \setminus \Psi| \geq |A \setminus \Phi_{2p+1}| \geq m-(2p+1)+1$. If $i > p$, then $|M \cap \Psi| =$ $|S_1 \cup \cdots \cup S_{2p-1} \cup \{a\}| = 2p + 1.$

Subcase IIb. $M = S_2 \cup \cdots \cup S_{2i} \cup A \cup \{x\}, A \in \mathcal{M}(Q/\Phi_{2i+1})$. If $j \leq p$, then $|M\setminus \Psi| \ge |A\setminus \Phi_{2p+1}| \ge m-(2p+1)+1$. If $j \ge p$, then $|M\cap \Psi| =$ $1+|S_2 \cup \cdots \cup S_{2p}|=2p+1.$

Therefore Ψ is $(m - (2p + 1))$ -universal in Q^+ .

THEOREM 4.8. If $\Psi \in \mathcal{B}(Q, u)$, $\Psi \cap \Phi_{m-1} = \emptyset$ and $|\Psi \cap S_m| \leq 1$, then $\Psi \in \mathcal{B}(Q^+,u)$.

PROOF. Assume $M = \bigcup_{n=1}^{j} S_{2n-1} \cup A$, $A \in \mathcal{M}(Q/\Phi_{2i})$ or $M =$ $\bigcup_{\nu=1}^{j} S_{2\nu} \cup A \cup \{x\}, A \in \mathcal{M}(Q/\Phi_{2j+1})$. Define $r = 2j-1$ in the first case, $r = 2j$ in the second case. There is a set $\overline{M} \in \mathcal{M}(Q)$ such that $A \cup \Phi_{r+1} \supset \overline{M} \supset A$. If $r < m$, then $|M \cap \Psi| = |A \cap \Psi| \leq |\bar{M} \cap \Psi| \leq m - u$. If $r = m$, then $|M \cap \Psi| \leq$ 1. If $u = m$, then $\Psi = \emptyset$, hence $0 = |M \cap \Psi| \leq m - u = 0$. If $u < m$, then $|M \cap \Psi| \leq 1 \leq m-u.$

THEOREM 4.9. If $\Psi \in \mathcal{B}(Q, u)$, $\Psi \cap \Phi_m = \emptyset$, $a \in S_p$, $b \in S_{p+1}$, $1 \leq p \leq m$ *and* $[\Psi, a, b] \in \mathcal{B}(Q, u-1)$, then $[\Psi, a, b] \in \mathcal{B}(Q^+, u-1)$.

PROOF. We use the same notations as in the proof of Theorem 4.8. If $r \geq p$, *then* $|M \cap (\Psi \cup \{a,b\})| = |A \cap \Psi| + 1 \leq |\overline{M} \cap \Psi| + 1 \leq m - u + 1$. If $r < p$ then $|M \cap (\Psi \cup \{a,b\})| = |A \cap (\Psi \cup \{a,b\})| \leq |\bar{M} \cap (\Psi \cup \{a,b\})| \leq m-(u-1).$

THEOREM 4.10. An edge E of Q^+ is a u.e. of Q^+ iff either

(1) $E = [a, x]$ and $a \in S_1$, or

(2) E is a u.e. of Q and either (a) $E \cap \Phi_m = \emptyset$ or (b) $E = [a, b]$ with $a \in S_p$ and $b \in S_{p+1}$ for some $1 \leq p \leq m$.

PROOF. In view of Theorems 4.6(5), 4.8, 4.9 and 3.10 it suffices to prove that if $E = [a, b]$ is an edge of O and either

 (α) $a \in S_p$, $b \notin \Phi_{p+1}$ for some $1 \leq p < m$, or

(β) $E = [S_p]$ for some $1 \leq p \leq m$,

then E is not universal in Q^+ .

PROOF OF (a). If $a \in S_p$, $b \notin \Phi_{p+1}$, $1 \leq p < m$, then by 4.2(5) b belongs to a set $A \in \mathcal{M}(Q/\Phi_{p+1})$. $\{a\} \cup A$ is included in a m.f. of Q^+ (of type (a) if p is odd and of type (b) if p is even). But $[a, b] \subset [a, A]$, hence $[a, b]$ is not universal in Q^+ .

 (β) follows immediately from Lemma 4.7.

In the rest of this section we deal with the problem of embedding the complex $\mathcal{B}(Q, u)$ of u-universal faces of Q (see Definition 3.1) in the boundary complex of a neighborly $2(m - u)$ -polytope.

This material will not be needed in subsequent sections.

If $|\text{vert } Q | = 2m + 2$, then the structure of Q is well-known (see [6, pp. 98, 108]). Q has two vertex-disjoint missing m-faces Δ_1 , Δ_2 , and $\mathcal{B}(Q, u)$ is the free join of skel_{m-u-1} Δ_1 and skel_{m-u-1} Δ_2 , i.e. if S Cvert Q then $[S] \in \mathcal{B}(Q, u)$ iff $|S \cap \Delta_1| \leq m - u$ and $|S \cap \Delta_2| \leq m - u$.

It follows that every u-universal $(2m-2u-2)$ -face of Q is included in precisely $u + 2$ u-universal $(2m - 2u - 1)$ -faces of O, consequently, $\mathcal{B}(O, u)$ is not embeddable in the boundary complex of any $2(m - u)$ -polytope, unless $u=0$.

From now on, assume that $|\text{vert } Q | = v \ge 2m + 3$.

For cyclic polytopes the situation is simple: If $Q = C(v, 2m)$, $v \ge 2m + 3$, then $\mathcal{B}(Q, u) \cong \mathcal{B}(C(v, 2(m - u)))$ for $u = 0, 1, \dots, m - 1$, and the isomorphism is given by any mapping of vert Q onto vert $C(v, 2(m - u))$ which preserves the natural cyclic order of the vertices. Moreover, if the vertices of Q lie on the

moment curve $x(t) = (t, t^2, \dots, t^{2m})$, or on the trigonometric moment curve $x(\theta) = (\cos \theta, \sin \theta, \cdots, \cos m\theta, \sin m\theta)$, then $C(v, 2(m - u))$ can be taken as the image of Q under the orthogonal projection of R^{2m} onto the subspace $R^{2(m-u)} = \{(x_1, \dots, x_{2(m-u)}, 0, \dots, 0) : x_i \in R\}.$

In the case $u = m - 1$, Theorem 3.10 solves the problem stated above: $\mathcal{B}(Q, m-1)$ is isomorphic to a subcomplex of the boundary complex of a convex v-gon.

Now we shall see that the embeddability of $\mathcal{B}(Q, u)$ is preserved by the sewing construction.

THEOREM 4.11. *Suppose Q_u* is a $2(m - u)$ -polytope $(0 \lt u \lt m)$, vert Q_u = $| \text{vert } O |$, and α is an isomorphism of $\mathcal{B}(Q, u)$ into $\mathcal{B}(Q_u)$. (This implies that Q_u is *neighborly.) Assume also that* $Q^+ = [Q, x]$ *is obtained from Q by sewing at x through a u.t.* \mathcal{T} .

Then there is a polytope $Q_u^+ = [Q_u, x_u]$, *obtained from* Q_u *by sewing at x_u through an appropriate u.t.* \mathcal{T}_u , and an isomorphism α^+ of $\mathcal{B}(Q^+, u)$ into $\mathcal{B}(Q^+u)$. *Moreover,* $\alpha^{+}(q) = \alpha(q)$ for all $q \in$ vert Q.

PROOF. Define $\mathcal{T}_u = {\alpha \Phi_i}_{i=1}^{m-u}$. It is easily checked that \mathcal{T}_u is u.t. in Q_u . Choose x_u to be a point that lies exactly beyond $\mathscr{C}(Q_u, \mathscr{T}_u)$, and let Q_u^+ = $[Q_{\mu}, x_{\mu}]$.

Define α^+ : vert Q^+ \rightarrow vert Q^+_{μ} by $\alpha^+(x) = x_{\mu}$, $\alpha^+(q)$ for $q \in$ vert Q. In order to show that α^+ extends to an isomorphism of $\mathcal{B}(Q^+, u)$ into $\mathcal{B}(Q^+_{u})$, we must prove that if $S \subset \text{vert } Q^+$ and $[\alpha^*S] \notin \mathcal{B}(Q_u^+)$ then $[S] \notin \mathcal{B}(Q^+, u)$. It suffices to prove this for S Cvert Q⁺ such that $[\alpha^+S]$ is a m.f. of Q_u^+ .

Assume $\lceil \alpha^*S \rceil$ is a m.f. of Q_u^* .

Case I: $\alpha^+S = \alpha(S_1 \cup S_3 \cup \cdots \cup S_{2i-1}) \cup \alpha A$ where $0 \leq j < \frac{1}{2}(m - u + 1)$ and $\alpha A \in \mathcal{M}(Q_u/\alpha \Phi_{2i})$, or $j = \frac{1}{2}(m - u + 1)$ and $A = \emptyset$ (see Lemma 4.7). It follows that $S = S_1 \cup S_2 \cup \cdots \cup S_{2i-1} \cup A$ and $[\alpha A, \alpha \Phi_{2i}] \notin \mathcal{B}(Q_u)$. Therefore $[A, \Phi_{2i}] \not\in \mathcal{B}(Q, u)$, hence there is a set $B \subset \text{vert } Q$, $|B| \le u$ and $[A, B, \Phi_{2i}] \notin \mathcal{B}(Q).$

If F is a facet of Q and $F \supset S \cup B$, then $F \in (\mathscr{F}_1 \setminus \mathscr{F}_2) \cup \cdots \cup (\mathscr{F}_{2j-3} \setminus \mathscr{F}_{2j-2}) \cup$ \mathscr{F}_{2j-1} and $F \notin \mathscr{F}_{2j}$. Hence $[S, B] \notin \mathscr{B}(Q^+),$ and consequently $[S] \notin \mathscr{B}(Q^+, u)$.

Case II: $\alpha^+S = \alpha(S_2 \cup S_4 \cup \cdots \cup S_{2i}) \cup \alpha A \cup \{x_u\}$ where $0 \leq j < \frac{1}{2}(m - u)$ and $\alpha A \in \mathcal{M}(Q_{\alpha}/\alpha \Phi_{2j+1}),$ or $j = \frac{1}{2}(m - u)$ and $A = \emptyset$.

As above, we find that $S = S_2 \cup S_4 \cup \cdots \cup A \cup \{x\}$ and $[A, \Phi_{2j+1}] \notin \mathcal{B}(Q, u)$. There is a set B Cvert Q such that $|B| \le u$ and $[A, B, \Phi_{2i+1}] \notin \mathcal{B}(Q)$.

If F is a facet of O and $F\supset B\cup (S\setminus\{x\})$, then $F\in({\mathscr{F}}_0\setminus{\mathscr{F}}_1)\cup\cdots\cup$ $(\mathscr{F}_{2i} \setminus \mathscr{F}_{2i+1}),$ hence $[S, B] \notin \mathscr{B}(Q^+),$ and therefore $[S] \notin \mathscr{B}(Q^+, u).$

Theorem 4.11 states that, in an appropriate sense, $(Q^+)_u = (Q_u)^+$.

It is probably not true that for every neighborly $2m$ -polytope Q (with $|vert O| \ge 2m + 3$ and for all $1 \le u \le m - 2$, the complex $\Re(Q, u)$ can be embedded in the boundary complex of a neighborly $2(m - u)$ -polytope Q_u , though we have no counterexample.

5. Reconstruction theorems

If O, \mathcal{T} , \mathcal{C} , x and O^+ are as in Convention 4.5, then we say that O^+ *is obtained from Q at x by sewing through the tower* \mathcal{T} *. We claim that the tower* \mathcal{T} *is* determined by Q^+ and x in the following sense:

If Q^+ is obtained from Q at x by sewing through any tower \mathcal{T}' , then $\mathcal{T}' = \mathcal{T}$.

In order to prove this it suffices to show that if $\mathcal{C}(O, \mathcal{T}) = \mathcal{C}(O, \mathcal{T}')$ then $\mathcal{T} = \mathcal{T}'$, because Q^+ and its vertex x determine \mathcal{C}' (see Theorem 2.10).

LEMMA 5.1. Let Φ be a u.f. of Q with 2*j* vertices, Ψ a u.f. of Q with 2*j* + 2 *vertices and* $\Psi \supset \Phi$. Then $\Phi = \bigcap (\mathscr{F}_{\Phi} \setminus \mathscr{F}_{\Psi})$ (see Definition 4.3).

PROOF. Obviously $\Phi \subset \bigcap (\mathscr{F}_{\Phi} \setminus \mathscr{F}_{\Psi}) \subset Q$. Suppose $y \in \text{vert } Q \setminus \Phi$. We have to show that Q has a facet F such that $F \supset \Phi$, $F \supset \Psi$ and $y \not\in F$. If $y \in \Psi \backslash \Phi$ then every facet of Q which includes Φ and does not contain y is in $\mathscr{F}_{\Phi} \backslash \mathscr{F}_{\Psi}$.

Suppose $y \notin \Psi$. By 4.2(5) there is a set A C vert Q $(\Psi \cup \{y\})$ such that $[A, \Psi] \notin \mathcal{B}(Q)$ and $|A| = m - j$ (Proposition 4.2(7)). Since $y \notin [\Phi, A]$, it follows that Q has a facet F such that $\Phi \subset F$, $A \subset F$, $\gamma \not\in F$ and necessarily $\Psi \not\subset F$. \Box

THEOREM 5.2. *For i* = 1,2, *let* \mathcal{T}_i *be a universal tower in Q. If* $\mathcal{C}(Q, \mathcal{T}_1)$ = $\mathscr{C}(Q, \mathscr{T}_2)$ then $\mathscr{T}_1 = \mathscr{T}_2$.

PROOF. Let $\mathcal{T} = {\varphi_i}_{i=1}^m$ be a u.t. in Q. We shall prove that $\mathcal{C} = \mathcal{C}(Q, \mathcal{T})$ and $\mathcal{F}(Q)$ determine Φ_i (i = 1, \cdots , m).

Denote by \mathcal{F}_0 the set of all facets of Q. We proceed to define by induction a sequence $\mathscr{C}_1, \mathscr{C}_2, \cdots$ of subsets of \mathscr{F}_0 , as follows:

$$
\mathscr{C}_1 = \mathscr{C}, \quad \text{and} \quad \mathscr{C}_j = \{ F \in \mathscr{F}_0 \setminus \mathscr{C}_{j-1} : \cap \mathscr{C}_{j-1} \subset F \} \quad \text{for } j > 1.
$$

We claim that $\Phi_j = \bigcap \mathcal{C}_j$ for $j = 1, 2, \dots, m$. Assume $1 \leq j \leq m$ and $\Phi_i = \bigcap \mathcal{C}_i$ for all i, $1 \le i < j$. It is easy to prove, by induction on i, that \mathcal{C}_i = $\bigcup_{\nu\geq 0}(\mathscr{F}_{i+2\nu}\setminus\mathscr{F}_{i+2\nu+1})$ for $1\leq i\leq j$. In particular $\mathscr{F}_i\setminus\mathscr{F}_{i+1}\subset\mathscr{C}_i\subset\mathscr{F}_i$. For $j< m$, Lemma 5.1 yields $\Phi_i = \bigcap (\mathscr{F}_i \setminus \mathscr{F}_{i+1}) \supset \bigcap \mathscr{G}_i \supset \bigcap \mathscr{F}_i = \Phi_i$, hence $\Phi_i = \bigcap \mathscr{C}_i$. If

THEOREM 5.3. *Let Q, Q+ be neighborly 2m-polytopes,* vert $Q \cup \{x\}$, $x \notin Q$. Suppose $a, b \in \text{vert } Q$, $a \neq b$. If $[a, x]$ and $[b, x]$ are *universal edges of* Q^+ *, then* $[a, b]$ *is a universal edge of Q.* vert O^+ =

Theorem 5.3 is a special case of Corollary 3.9. It can also be deduced directly from the following theorem:

THEOREM 5.4. Let Q, Q^+ and x be as in Theorem 5.3. If $a \in \text{vert } Q$, then $[a, x]$ is a u.e. of Q^+ iff all the facets of Q that x covers contain a.

PROOF. Suppose $[a, x]$ is a u.e. of Q^+ . For $0 < \lambda < 1$ let $z = z(\lambda) =$ $(1 - \lambda)a + \lambda x$. It is easy to see that $[Q, z]$ is an *m*-neighborly polytope. If Q had a facet F such that $a \notin F$ and x lies beyond F, then λ could be chosen such that $z \in \text{aff } F$, contradicting the simpliciality of $[Q, z]$.

Now suppose that all the facets of Q that x covers contain q . Assume A Cvert Q, $|A|=m-1$. We have to show that $[a, x, A] \in \mathcal{F}(Q^+)$. Since $[a, A] \in \mathcal{F}(Q^*)$, it suffices to prove that Q has a facet F such that x lies beyond F and $\{a\} \cup A \subset F$. But $[A, x] \in \mathcal{F}(Q^*)$, hence Q has a facet F that includes A and is covered by x. Necessarily, $a \in F$.

PROOF OF THEOREM 5.3. Suppose $[a, x]$, $[b, x]$ are u.e.s of Q^+ . If A Cvert O, $|A| = m - 1$, then $[A, x] \in \mathcal{F}(Q^+)$, hence Q has a facet F such that $F \supseteq A$ and x lies beyond F. By Theorem 5.4, $F \supset \{a, b\}$, and therefore $[a, b, A] \in \mathcal{F}(Q)$. \Box

The same technique leads to a proof of the next theorem.

THEOREM 5.5. Let $\mathscr C$ and $\mathscr D$ be sets of facets of Q. Let x, y be points in $R^{2m} \setminus Q$, *such that x lies exactly beyond* $\mathscr C$ *and y lies exactly beyond* $\mathscr D$ *. Assume both* $[Q, x]$ *and* $[Q, y]$ *are neighborly 2m-polytopes with* $|vert Q| + 1$ *vertices. If* $C \subseteq \mathcal{D}$ *then* $\mathscr{C} = \mathscr{D}$.

PROOF. For $0 < \lambda < 1$, define $z = z(\lambda) = (1 - \lambda)x + y$. It is easy to see that $[Q, z]$ is a neighborly polytope (z covers enough, but not too many facets of Q) and the simpliciality of $[Q, z]$ for every choice of λ , $0 < \lambda \le 1$, implies that $\mathscr{D}\setminus\mathscr{C}=\varnothing.$

As a matter of fact, $\mathcal{C} \mid \mathcal{C}$ is a function of $v = \vert \text{vert } Q \vert$ and m only:

$$
|\mathscr{C}| = \left(\frac{v-m-1}{m-1}\right).
$$

The next theorem is a converse to Theorem 4.6.

308 I. SHEMER Isr. J. Math.

THEOREM 5.6. Let Q, Q^+ be neighborly 2m-polytopes. Assume vert Q^+ = vert $Q \cup \{x\}$, $x \notin Q$ and let $\mathcal{T} = {\Phi_i}\}_{i=1}^m$ *be a tower in Q with* $|\text{vert }\Phi_i| = 2j$ for $j=1,2,\dots,m$. If

(1) Φ_i is a u.f. of Q^+ for every even j, $1 \leq j \leq m$, and

 (2) $[\Phi_i, p, x]$ is a u.f. of Q^+ for every even j, $0 \leq j < m$ and $p \in \text{vert } \Phi_{i+1} \backslash \Phi_i$. *(here* $\Phi_0 = \emptyset$),

then $\mathcal T$ *is a universal tower in Q, and Q⁺ is obtained from Q at x by sewing through .j-.*

REMARK. If P is a subpolytope of P^+ , and Φ is a face of both P and P^+ , then there is a flat H such that the corespondence $\Psi \to \Psi \cap H$ is an isomorphism of the upper segment $[\Phi, P^+]$ of $\mathcal{F}(P^+)$ onto $\mathcal{F}(P^+ \cap H)$, and the same correspondence is an isomorphism of the upper segment $[\Phi, P]$ of $\mathcal{F}(P)$ onto $\mathcal{F}(P \cap H)$ (see [8, pp. 72-73]).

PROOF. Denote by \mathcal{D} the set of facets of Q covered by x. We have to show that $\mathcal T$ is a u.t. in Q and that $\mathcal D = \mathcal C(Q, \mathcal T)$ (see Definition 4.3).

Assume *j* is even, $0 \leq j \leq m$. Consider the polytopes Q/Φ_i and Q^+/Φ_i . They are neighborly 2($m - j$)-polytopes, and vert $Q^+/\Phi_i = \text{vert } Q/\Phi_i \cup \{[\Phi_i, x]/\Phi_i\}$ by the remark above. By Corollary 5.3, Φ_{i+1}/Φ_i is a u.f. of Q/Φ_i . Therefore $[\Phi_{j+1}, A]/\Phi_j$ is a face of Q/Φ_j for every A \subset vert $Q \setminus \Phi_j$ $|A| \leq m - j - 1$. Hence Φ_{i+1} is a u.f. of Q. It follows that $\mathcal T$ is a u.t. in Q.

Denote by x' the vertex $[\Phi_i, x]/\Phi_i$ of Q^*/Φ_i . From condition (2) and Theorem 5.4 it follows that if x' lies beyond the facet $F' = F/\Phi_i$ of Q/Φ_i then $F \supset \Phi_{i+1}$. (Note that x' lies beyond F' iff x lies beyond F.) It follows that $\mathcal{D} \cap \mathcal{F}_i \subset \mathcal{F}_{i+1}$ for even j, $0 \le j < m$. The same conclusion follows from condition (1) for $j = m$, if m is even $(\mathcal{F}_{m+1} = \emptyset)$. Therefore $\mathcal{D} \cap (\mathcal{F}_i \setminus \mathcal{F}_{i+1}) = \emptyset$ for even j, $0 \leq j \leq m$, hence $\mathscr{D} \cap \cup \{(\mathscr{F}_i \setminus \mathscr{F}_{i+1}): j \text{ even}\} = \emptyset$, i.e., $\mathscr{D} \subset \mathscr{C}(Q, \mathscr{T})$. By Theorem 4.6 and Theorem 5.5 we conclude that $\mathcal{D} = \mathcal{C}(Q, \mathcal{T})$.

Theorem 5.6 says that we can tell from partial information about the structure of $\mathcal{F}(Q)$ whether Q is obtained by sewing at a given vertex x through a given tower \mathcal{T} . The next theorem shows how this implies "commutativity" of our sewing procedure.

DEFINITION 5.7. If $\mathcal T$ is a u.t. in Q, let $Q(\mathcal T)$ denote the class of all polytopes that are obtained from Q by sewing through \mathcal{T} .

THEOREM 5.8. For $1 \leq i \leq p$, let \mathcal{T}_i be a u.t. *in Q. Assume the sets* $\bigcup \mathcal{F}_i$, $1 \leq i \leq p$, are pairwise disjoint (i.e., $A \in \mathcal{F}_i$, $B \in \mathcal{F}_i$ and $i \neq j$ imply $A \cap B = \emptyset$. Then there are points x_i , $1 \leq i \leq p$, such that $[Q, \{x_i : i \in \Gamma\}, x_i] \in$ $[Q, {x_i : i \in \Gamma}](\mathcal{I}_i)$ for every subset Γ of $\{1, \dots, p\}$ and for every *j* in $\{1, \dots, p\} \setminus \Gamma$.

PROOF. By Lemma 4.4 and Theorem 4.8 it follows easily, by induction on k , $1 \leq k \leq p$, that there are points x_1, \dots, x_p such that the sequence $(x_1, \mathcal{T}_1), \cdots, (x_p, \mathcal{T}_p)$ satisfies

$$
(*) \qquad [Q, x_1, \cdots, x_k] \in [Q, x_1, \cdots, x_{k-1}](\mathcal{T}_k) \quad \text{for } 1 \leq k \leq p.
$$

Theorem 5.8 follows from the next lemma. \Box

LEMMA 5.9. *Under the assumptions of Theorem* 5.8, *if the sequence* $\{(x_i, \mathcal{T}_i)\}_{i=1}^p$ satisfies (*), then the sequence $\{(x_{\pi(i)}, \mathcal{T}_{\pi(i)}\}_{i=1}^p$ satisfies (*) for any *permutation* π of $\{1, \dots, p\}$.

PROOF. For $p = 1$ there is nothing to prove.

Assume $p = 2$. Consider the faces of $[Q, x_1, x_2]$ whose universality is asserted in Theorem 4.6, parts (3) and (5), with $x = x_2$ and $\mathcal{T} = \mathcal{T}_2$. Obviously, each such face is a u.f. of $[Q, x_2]$, and by Theorem 5.6, $[Q, x_2] \in Q(\mathcal{T}_2)$. Now consider the faces of $[Q, x_1]$ whose universality is asserted in Theorem 4.6, parts (3) and (5), with $x = x_1$ and $\mathcal{T} = \mathcal{T}_1$. By Theorem 4.8, these faces are u.f.s also in [Q, x_1, x_2], and by Theorem 5.6, $[Q, x_2, x_1] \in [Q, x_2](\mathcal{F}_1)$. Therefore the sequence (x_2, \mathcal{F}_2) , (x_1, \mathcal{T}_1) satisfies $(*)$.

Now assume $p > 2$. We say that π is an admissible permutation of $\{1, \dots, p\}$ if ${x_{\pi(i)}, \mathcal{T}_{\pi(i)}}_{i=1}^p$ satisfies (*) whenever ${(x_i, \mathcal{T}_i)}_{i=1}^p$ satisfies (*). Since the set of admissible permutations is closed under multiplication, it suffices to show that the transpositions $(i, i + 1)$, $1 \le i < p$, are admissible.

Let x_1, \dots, x_p be points such that (*) holds for $(x_1, \mathcal{T}_1), \dots, (x_p, \mathcal{T}_p)$. Assume $1 \leq i < p$. We shall show that the sequence $(x_1, \mathcal{T}_1), \cdots, (x_{i+1}, \mathcal{T}_{i+1}),$ $(x_i, \mathcal{T}_i), \dots, (x_p, \mathcal{T}_p)$ also satisfies (*). The only parts of (*) that are not self-evident for this sequence are $[Q', x_{i+1}] \in Q'(\mathcal{I}_{i+1})$ and $[Q', x_{i+1}, x_i] \in$ $[Q', x_{i+1}](\mathcal{F}_i)$, where $Q' = [Q, x_1, \dots, x_{i-1}]$. But these assertions follow from the case $p = 2$, applied to Q' and to the sequence (x_i, \mathcal{T}_i) , $(x_{i+1}, \mathcal{T}_{i+1})$.

Note that the proof of Theorem 5.8 given here holds even if the assumption that the sets $\bigcup \mathcal{T}_i$ are pairwise disjoint is replaced by the following slightly weaker condition: Assume $\mathcal{T}_i = {\phi_{i,1}, \dots, \Phi_{i,m}}$ for $1 \leq i \leq p$, then $\Phi_{i,m-1} \cap \Phi_{i,m}$ \emptyset and $|\Phi_{i,m} \cap \Phi_{i,m}| \leq 1$ for $i \neq j, 1 \leq i,j \leq p$.

It would be interesting to know what is the freedom in choosing the points x_1, \dots, x_p , in case we do assume that the towers $\mathcal{T}_1, \dots, \mathcal{T}_p$ have pairwise disjoint unions:

The following might be true:

If $[Q, x_i] \in O(\mathcal{T}_i)$ for $1 \leq i \leq p$, then $[Q, \{x_i : i \in \Gamma\}, x_i] \in [Q, \{x_i : i \in \Gamma\}](\mathcal{T}_i)$ for every $\Gamma \subset \{1,2,\dots,p\}$ and $j \in \{1,2,\dots,p\}\backslash \Gamma$.

6. Lower bounds

Repeated application of the sewing construction described in section 4 yields lower bounds for the number $g(v,2m)$ of combinatorial types of neighborly $2m$ -polytopes with v vertices.

We start with a cyclic 2*m*-polytope $C(v, 2m)$ with v vertices, $v \ge 2m + 3$, and "sew" it repeatedly.

The main results are as follows:

THEOREM 6.1.
$$
g(2m+4,2m) > \frac{(2m+2)!}{3 \cdot 2^{m+3}(m+2)!}
$$
.

(The right-hand side is asymptotic to $(\sqrt{2}/6)(2m/e)^m$ as $m \to \infty$.)

THEOREM 6.2. $g((2m+1)p+2,2m) \geq \frac{1}{2}(pm-p)!$ *for* $p = 2,3,\cdots$.

PROOF OF THEOREM 6.1. Let K be $C(2m + 3, 2m)$. Assume that vert K = ${a_1, a_2, \dots, a_{2m+3}}$, and that $a_1, a_2, \dots, a_{2m+3}, a_1$ is the circuit of universal edges of K. Aut K, the group of combinatorial automorphisms of K, is precisely the dihedral group of order $2(2m + 3)$ consisting of rotations and reflections of the circuit $a_1, a_2, \dots, a_{2m+3}, a_1$.

Consider pairs (Q, x) where Q is a neighborly 2m-polytope with $2m + 4$ vertices and x is a distinguished vertex of Q. Two such pairs (Q, x) , (Q', x') are considered isomorphic if there is a combinatorial equivalence φ : vert $Q \rightarrow$ vert Q' with $\varphi(x) = x'$. The number of isomorphism types of such pairs is clearly at most $(2m + 4)g(2m + 4, 2m)$.

Now let us count the number of isomorphism types of pairs (K^+, x) , where K^+ is obtained from K at x by sewing through a u.t. \mathcal{T} . Consider two such pairs (K_i^*, x_i) , with $K_i^+ \in K(\mathcal{T}_i)$, $i = 1,2$. If these pairs are isomorphic by a mapping φ : vert K_1^+ vert K_2^+ such that $\varphi(x_1) = x_2$, then $\psi = \varphi \mid K$ is an automorphism of K, and ψ maps $\mathscr{C}(k, \mathcal{T}_1)$ onto $\mathscr{C}(K, \mathcal{T}_2)$. It follows from Theorem 5.2 that $\psi(\mathcal{T}_1) = \mathcal{T}_2$.

The converse is obvious: If \mathcal{T}_1 is mapped onto \mathcal{T}_2 by an automorphism of K, then the pairs $(K_1^+, x_1), (K_2^+, x_2)$ are isomorphic.

Thus, the number of isomorphism types of pairs (K^+, x) considered above is precisely the number of equivalence classes of u.t.s of K under Aut K .

Every u.t. in K can be transformed by a suitable rotation to a tower with $\Phi_1 = [a_1, a_2]$. With Φ_1 fixed, Φ_2 can be chosen in 2m + 1 ways, then Φ_3 in 2m - 1 ways and so on. (Note that K/Φ_i is a cyclic polytope of type $C(2(m-i)+$ 3, 2(m - i)), for $0 \le i < m$.) Therefore the number of u.t.s in K with $\Phi_1 = [a_1, a_2]$ is $(2m + 1)(2m - 1)\cdots$ 7.5. There is only one automorphism ψ of K, except the identity, that maps the edge $\Phi_1 = [a_1, a_2]$ onto itself $(\psi(a_i) = a_{2m+6-i}$ for $3 \leq i \leq 2m + 3$).

Only one u.t. is fixed by ψ . It follows that the number of equivalence classes of u.t.s in K under Aut K is precisely $\frac{1}{2}(1 + (2m + 1)(2m - 1)\cdots 5)$.

We conclude that $(2m + 4)g(2m + 4, 2m) > \frac{1}{6} \prod_{i=1}^{m} (2i + 1)$.

If we repeat the reasoning in the proof of Theorem 6.1 with $K=$ $C(2m + 3, 2m)$ replaced by $K = C(v - 1, 2m)$, we conclude that $g(v, 2m) \rightarrow \infty$ as $v \rightarrow \infty$. But the following construction yields a better lower bound.

PROOF OF THEOREM 6.2. Let K be a cyclic polytope $C(v, 2m)$ with $v =$ $2mp+2$ vertices, $p \ge 2$. Assume that vert $K = \{a_1, a_2, \dots, a_v\}$ and $a_1, a_2, \dots, a_v, a_1$ is the circuit of u.e.s of K. We say that a_i and a_i are successive vertices if $j=i+1$. A family $\sigma = {\sigma(i,j)}$, $1 \le i \le p$, $1 \le j \le m$ } is called a partition of vert K if:

(1) $\sigma(i,j)$ is a set of two successive vertices of K, $1 \le i \le p$, $1 \le j \le m$.

(2) $\sigma(i,1) = \{a_{2i}, a_{2i+1}\}, 1 \leq i \leq p.$

(3) $\sigma(i,j) \subset \{a_{2p+3}, a_{2p+4}, \cdots, a_v\}, 1 \leq i \leq p, 1 < j \leq m.$

(4) Every vertex of K, except a_1 and a_{2p+2} , is contained in some $\sigma(i,j)$.

From (1)-(4) it follows that the sets $\sigma(i,j)$ are pairwise disjoint.

For every partition σ define: $\mathcal{T}_i = \mathcal{T}_i(\sigma) = \{[\sigma(i, 1), \dots, \sigma(i, l)]\}_{i=1}^m$, $1 \le i \le p$. For $1 \le i \le p$, \mathcal{T}_i is a u.t. in K, and the sets $\bigcup \mathcal{T}_i$, for $1 \le i \le p$, are pairwise disjoint. By Theorem 5.8 there are points $x_i = x_i(\sigma)$, $1 \le i \le p$, such that $[K, \{x_i : j \in \Gamma\}, x_i] \in [K, \{x_i : j \in \Gamma\}](\mathcal{T}_i)$ for $\Gamma \subset \{1, \cdots, p\} \setminus \{i\}.$

Define $K^{\sigma} = [K, x_1, \dots, x_p]$. K^{σ} is a neighborly 2*m*-polytope with $v + p =$ $(2m + 1)p + 2$ vertices. We shall show that the number of distinct combinatorial types of polytopes K^{σ} is at least one half the number $(pm - p)!$ of partitions.

Define an equivalence relation on the set of partitions as follows: $\sigma \sim \tau$ if $K^{\sigma} \cong K^{\tau}$.

In order to complete the proof, it suffices to show that an equivalence class of a partition contains at most two elements.

Assume $\sigma \sim \tau$, and let $f : K^{\sigma} \to K^{\tau}$ be a combinatorial equivalence.

If E is a u.e. of K^{σ} then either E is a u.e. of K or $x_i = x_i(\sigma) \in \text{vert } E$ for some $1 \le i \le p$. K^{σ} is sewed at x_i through \mathcal{T}_i (Theorem 5.8), hence $[x_i, a_{2i}]$ and